• 2017 多校赛 第二场


    1003.Maximum Sequence

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 0    Accepted Submission(s): 0


    Problem Description
    Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

    Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: an+1a2n. Just like always, there are some restrictions on an+1a2n: for each number ai, you must choose a number bk from {bi}, and it must satisfy ai≤max{aj-j│bk≤j<i}, and any bk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{2nn+1ai} modulo 109+7 .

    Now Steph finds it too hard to solve the problem, please help him.
     
    Input
    The input contains no more than 20 test cases.
    For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
    1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
     
    Output
    For each test case, print the answer on one line: max{2nn+1ai} modulo 109+7。
     
    Sample Input
    4 8 11 8 5 3 1 4 2
     
    Sample Output
    27
     
    思路:贪心,用一个数组记下从i到n的a[i]-i的最大值pre[i],可以得到pre[i]=max(pre[i+1],a[i]-i),然后容易得到b[k]从小往大取时,后n项之和最大,所以a[n+1]=pre[b[1]](后n项会呈单调不递增趋势,a[n+1]-n-1即为之后取最大值的比较对象)。
    代码:
     1 #include "cstdio"
     2 #include "stdlib.h"
     3 #include "iostream"
     4 #include "algorithm"
     5 #include "string"
     6 #include "cstring"
     7 #include "queue"
     8 #include "cmath"
     9 #include "vector"
    10 #include "map"
    11 #include "set"
    12 #define db double
    13 #define ll long long
    14 #define inf 0x3f3f3f
    15 using namespace std;
    16 const int N=3e5+5;
    17 const int mod=1e9+7;
    18 #define rep(i,x,y) for(int i=x;i<=y;i++)
    19 //char s[N],t[N];
    20 db  pi=3.14;
    21 //int s[N],w[N];
    22 int a[N],b[N];
    23 int pre[N];
    24 int main()
    25 {
    26     int n;
    27     while(scanf("%d",&n)==1){
    28         for(int i=1;i<=n;i++){
    29             scanf("%d",a+i);
    30             a[i]-=i;
    31         }
    32         memset(pre,0, sizeof(pre));
    33         for(int i=n;i>=1;i--) pre[i]=max(a[i],pre[i+1]);
    34         for(int i=1;i<=n;i++) scanf("%d",&b[i]);
    35         sort(b+1,b+n+1);
    36         int ma=0;
    37         ll ans=pre[b[1]];
    38         for(int i=2;i<=n;i++){
    39             ma=max(pre[b[1]]-n-1,pre[b[i]]);
    40             ans=(ma+ans)%mod;
    41 //            printf("%d
    ",ma);
    42         }
    43         printf("%lld
    ",ans);
    44     }
    45 
    46 }

    10011.Regular polygon

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 752    Accepted Submission(s): 273


    Problem Description
    On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
     
    Input
    The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
     
    Output
    For each case, output a number means how many different regular polygon these points can make.
     
    Sample Input
    4
    0 0
    0 1
    1 0
    1 1
    6
    0 0
    0 1
    1 0
    1 1
    2 0
    2 1
     
    Sample Output
    1 2

    思路:整点正多边形只能是正方形,将点按x从小到大,y从大到小,枚举对角线 (x1,y1) (x2,y2) xx=x1-x2,yy=y1-y2;则x3=x1+yy,y3=y1-xx;x4=x1-yy,y4=y1+xx;判断是否存在即可。

    学长的代码:

     1 #include "cstdio"
     2 #include "stdlib.h"
     3 #include "iostream"
     4 #include "algorithm"
     5 #include "string"
     6 #include "cstring"
     7 #include "queue"
     8 #include "cmath"
     9 #include "vector"
    10 #include "map"
    11 #include "set"
    12 #define db double
    13 #define ll long long
    14 #define inf 0x3f3f3f
    15 #define rep(i,x,y) for(int i=x;i<=y;i++)
    16 using namespace std;
    17 const int N=3e5+5;
    18 const int mod=1e9+7;
    19 const double eps=1e-9;
    20 //char s[N],t[N];
    21 db  pi=3.14;
    22 int n;
    23 struct node
    24 {
    25     double x,y;
    26 }p[N];
    27 bool cmp(node a,node b)
    28 {
    29     return (a.x<b.x||(a.x==b.x&&a.y<b.y));
    30 }
    31 bool Check(double x,double y)
    32 {
    33     int l=1,r=n;
    34     while(l<=r)
    35     {
    36         int mid=l+r>>1;
    37         if(fabs(p[mid].x-x)<eps&&fabs(p[mid].y-y)<eps) return true;
    38         else if(p[mid].x-x>eps||(fabs(p[mid].x-x)<eps&&p[mid].y-y>eps)) r=mid-1;
    39         else l=mid+1;
    40     }
    41     return false;
    42 }
    43 int main()
    44 {
    45     while(~scanf("%d",&n))
    46     {
    47         ll ans=0;
    48         rep(i,1,n)
    49         {
    50             scanf("%lf%lf",&p[i].x,&p[i].y);
    51         }
    52         sort(p+1,p+1+n,cmp);
    53         rep(i,1,n)
    54         {
    55             rep(j,i+1,n)
    56             {
    57                 double x=(p[i].x+p[j].x)/2;
    58                 double y=(p[i].y+p[j].y)/2;
    59                 double xx=p[i].x-x;
    60                 double yy=p[i].y-y;
    61                 if(Check(x+yy,y-xx)&&Check(x-yy,y+xx)) ans++;
    62             }
    63         }
    64         printf("%lld
    ",ans/2);
    65     }
    66 }
     
  • 相关阅读:
    linux LVM详解
    Mysql SQL优化系列之——执行计划连接方式浅释
    Vue SSR常见问题、异常处理以及优化方案
    vue组件生命周期详解
    axios全局设置url公共请求头
    WebView中JS调用Android Method 遇到的坑整理
    node.js项目多环境配置
    用vue构建多页面应用
    前端系列-移动端开发踩过的一些坑
    Async:简洁优雅的异步之道
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/7247765.html
Copyright © 2020-2023  润新知