题意:有个N个点的有向图,求从点1到其他各点,然后从其他各点回到点1的最小距离。
思路:题意很容易理解,但是这题给的时间有点紧,不能用Dijksra 和Bellman_ford来做,只能有Spfa,先求出点1到到其他各点的最短距离,然后将边逆转,再求一下点1到各点的距离,求和就行了。明明思路是对的,但是愣是WA了一上午,不知道哪里错的,将discuss里提到的各种注意都改了,还是不对,差点疯了,结果不知道改了点什么就AC了,郁闷啊!!!
代码:
View Code
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <iostream> #include <algorithm> #include <queue> #include <math.h> #define N 1000050 using namespace std ; typedef long long ll ; const int INF = 1000000006 ; struct node { int e ; int val ; int next ; }p[N] , op[N] ; int head1[N] , head2[N] , q[N*10]; ll dis[N] , sum ; int vist[N] , n , m , num ; void init1( ) { memset( head1 , -1 , sizeof ( head1 )) ; memset( head2 , -1 , sizeof ( head2 )) ; num = 0 ; } void init2 () { int i ; for ( i = 1 ; i <= n ; i++ ) { dis[i] = INF ; vist[i] = 0 ; } } void add ( int x , int y , int z ) { p[num].e = y ; p[num].val = z ; p[num].next = head1[x] ; op[num].e = x ; op[num].val = z ; op[num].next = head2[y] ; head1[x] = head2[y] = num++ ; } void Spfa() { int i , u , v ; queue<int>q ; sum = 0 ; init2(); while( !q.empty()) q.pop(); q.push( 1 ) ; dis[1] = 0 ; while ( !q.empty()) { u = q.front(); q.pop() ; vist[u] = 1 ; for ( i = head1[u] ; i != -1 ; i = p[i].next ) { v = p[i].e ; if ( dis[v] > dis[u] + p[i].val ) { dis[v] = dis[u] + p[i].val ; if ( !vist[v] ) { vist[v] = 1 ; q.push( v ) ; } } } vist[u] = 0 ; //top++ ; } for ( i = 1 ; i <= n ; i++ ) sum += dis[i] ; init2() ; //top = 0 ; tail = 1 ; while ( !q.empty()) q.pop(); q.push( 1 ) ; dis[1] = 0 ; while ( !q.empty()) { u = q.front(); q.pop() ; vist[u] = 1 ; for ( i = head2[u] ; i != -1 ; i = op[i].next ) { v = op[i].e ; if ( dis[v] > dis[u] + op[i].val ) { dis[v] = dis[u] + op[i].val ; if ( !vist[v] ) { vist[v] = 1 ; q.push ( v ) ; } } } vist[u] = 0 ; //top++ ; } for ( i = 1 ; i <= n ; i++ ) sum += dis[i] ; //cout<<sum<<endl ; printf ( "%I64d\n" , sum ) ; } int main() { int i , x , y , z ; int cas ; scanf ( "%d" , &cas ) ; while ( cas-- ) { scanf ( "%d%d" , &n , &m ) ; init1(); for ( i = 1 ; i <= m ; i++ ) { scanf ( "%d%d%d" , &x , &y , &z ) ; add ( x , y , z ) ; } Spfa() ; } return 0 ; }