• 学习笔记18:Inception模型


    网络结构

    因为主要是学习pytorch,具体原理没有深究。如果将来搞CV的话,可能再回来搞懂吧。

    网络结构大概就是,用多个卷积核提取特征,然后将提取到的特征拼接在一起

    网络结构如下:

    实现思路是,首先定义卷积模型(包括卷积层和BN层),然后再实现Inception的Block(图中所示结构)

    卷积模型实现

    class BasicConv(nn.Module):
        def __init__(self, in_channels, out_channels, **kwargs):
            super().__init__()
            self.conv = nn.Conv2d(in_channels, out_channels, bias = False, **kwargs)
            self.bn = nn.BatchNorm2d(out_channels)
        def forward(self, x):
            x = self.conv(x)
            x = F.relu(self.bn(x), inplace = True)
            return x
    

    这里因为后面要传入卷积核的大小,padding的大小,因此要使用可变长参数

    Inception结构实现

    class InceptionBlock(nn.Module):
        def __init__(self, in_channels, pool_features):
            super().__init__()
            self.b1x1 = BasicConv(in_channels, 64, kernel_size = 1)
            
            self.b3x3_1 = BasicConv(in_channels, 64, kernel_size = 1)
            self.b3x3_2 = BasicConv(64, 96, kernel_size = 3, padding = 1)
            
            self.b5x5_1 = BasicConv(in_channels, 48, kernel_size = 1)
            self.b5x5_2 = BasicConv(48, 64, kernel_size = 5, padding = 2)
            
            self.bpool = BasicConv(in_channels, pool_features, kernel_size = 1)
        def forward(self, x):
            b1x1_out = self.b1x1(x)
            b3x3_out = self.b3x3_2(self.b3x3_1(x))
            b5x5_out = self.b5x5_2(self.b5x5_1(x))
            bpool_out = self.bpool(F.max_pool2d(x, kernel_size = 3, stride = 1, padding = 1))
            out= [b1x1_out, b3x3_out, b5x5_out, bpool_out]
            return torch.cat(out, dim = 1)
    
  • 相关阅读:
    Javascript中this关键字详解
    Javascript中this关键字详解
    springMVC对静态资源访问的处理
    springMVC对静态资源访问的处理
    Java编程风格节选
    Java编程风格节选
    ACID原则
    移动端实现裁剪图片生成base64图片(可缩放)
    移动端实现裁剪图片生成base64图片(可缩放)
    PHP imagick API中文简介
  • 原文地址:https://www.cnblogs.com/miraclepbc/p/14378634.html
Copyright © 2020-2023  润新知