• Kafka核心技术与实战——20 | 多线程开发消费者实例


      • Kafka Java Consumer 设计原理
        • 谈到 Java Consumer API,最重要的当属它的入口类 KafkaConsumer 了
          • KafkaConsumer 就变为了双线程的设计,即用户主线程和心跳线程
          • 所谓用户主线程,就是你启动 Consumer 应用程序 main 方法的那个线程
          • 而新引入的心跳线程(Heartbeat Thread)只负责定期给对应的 Broker 机器发送心跳请求,以标识消费者应用的存活性(liveness)
          • 引入这个心跳线程还有一个目的,那就是期望它能将心跳频率与主线程调用 KafkaConsumer.poll 方法的频率分开,从而解耦真实的消息处理逻辑与消费者组成员存活性管理
        • 社区为新版本 Consumer 设计了单线程 + 轮询的机制
      • 多线程方案
        • 方案一,消费者程序启动多个线程,每个线程维护专属的 KafkaConsumer 实例,负责完整的消息获取、消息处理流程
        • 方案二,消费者程序使用单或多线程获取消息,同时创建多个消费线程执行消息处理逻辑
        • 方案对比
        • 我们先看方案 1,它的优势有 3 点。
          • 1、实现起来简单,因为它比较符合目前我们使用 Consumer API 的习惯。我们在写代码的时候,使用多个线程并在每个线程中创建专属的 KafkaConsumer 实例就可以了。
          • 2、多个线程之间彼此没有任何交互,省去了很多保障线程安全方面的开销。
          • 3、由于每个线程使用专属的 KafkaConsumer 实例来执行消息获取和消息处理逻辑,因此,Kafka 主题中的每个分区都能保证只被一个线程处理,这样就很容易实现分区内的消息消费顺序。这对在乎事件先后顺序的应用场景来说,是非常重要的优势。
        • 说完了方案 1 的优势,我们来看看这个方案的不足之处。
          • 1、每个线程都维护自己的 KafkaConsumer 实例,必然会占用更多的系统资源,比如内存、TCP 连接等。在资源紧张的系统环境中,方案 1 的这个劣势会表现得更加明显。
          • 2、这个方案能使用的线程数受限于 Consumer 订阅主题的总分区数。我们知道,在一个消费者组中,每个订阅分区都只能被组内的一个消费者实例所消费。假设一个消费者组订阅了 100 个分区,那么方案 1 最多只能扩展到 100 个线程,多余的线程无法分配到任何分区,只会白白消耗系统资源。当然了,这种扩展性方面的局限可以被多机架构所缓解。除了在一台机器上启用 100 个线程消费数据,我们也可以选择在 100 台机器上分别创建 1 个线程,效果是一样的。因此,如果你的机器资源很丰富,这个劣势就不足为虑了。
          • 3、每个线程完整地执行消息获取和消息处理逻辑。一旦消息处理逻辑很重,造成消息处理速度慢,就很容易出现不必要的 Rebalance,从而引发整个消费者组的消费停滞。这个劣势你一定要注意。我们之前讨论过如何避免 Rebalance,如果你不记得的话,可以回到专栏第 17 讲复习一下。
        • 下面我们来说说方案 2。
          • 与方案 1 的粗粒度不同,方案 2 将任务切分成了消息获取和消息处理两个部分,分别由不同的线程处理它们
          • 比起方案 1,方案 2 的最大优势就在于它的高伸缩性,就是说我们可以独立地调节消息获取的线程数,以及消息处理的线程数,而不必考虑两者之间是否相互影响
          • 如果你的消费获取速度慢,那么增加消费获取的线程数即可;如果是消息的处理速度慢,那么增加 Worker 线程池线程数即可。
        • 不过,这种架构也有它的缺陷。
          • 1、它的实现难度要比方案 1 大得多,毕竟它有两组线程,你需要分别管理它们。
          • 2、因为该方案将消息获取和消息处理分开了,也就是说获取某条消息的线程不是处理该消息的线程,因此无法保证分区内的消费顺序。举个例子,比如在某个分区中,消息 1 在消息 2 之前被保存,那么 Consumer 获取消息的顺序必然是消息 1 在前,消息 2 在后,但是,后面的 Worker 线程却有可能先处理消息 2,再处理消息 1,这就破坏了消息在分区中的顺序。还是那句话,如果你在意 Kafka 中消息的先后顺序,方案 2 的这个劣势是致命的。
          • 3、方案 2 引入了多组线程,使得整个消息消费链路被拉长,最终导致正确位移提交会变得异常困难,结果就是可能会出现消息的重复消费。如果你在意这一点,那么我不推荐你使用方案 2
      • 实现代码示例
        • 方案 1 的主体代码:

          •  1 public class KafkaConsumerRunner implements Runnable {
             2      private final AtomicBoolean closed = new AtomicBoolean(false);
             3      private final KafkaConsumer consumer;
             4  
             5  
             6      public void run() {
             7          try {
             8              consumer.subscribe(Arrays.asList("topic"));
             9              while (!closed.get()) {
            10             ConsumerRecords records = 
            11                 consumer.poll(Duration.ofMillis(10000));
            12                  //  执行消息处理逻辑
            13              }
            14          } catch (WakeupException e) {
            15              // Ignore exception if closing
            16              if (!closed.get()) throw e;
            17          } finally {
            18              consumer.close();
            19          }
            20      }
            21  
            22  
            23      // Shutdown hook which can be called from a separate thread
            24      public void shutdown() {
            25          closed.set(true);
            26          consumer.wakeup();
            27      }
          • 这段代码创建了一个 Runnable 类,表示执行消费获取和消费处理的逻辑。每个 KafkaConsumerRunner 类都会创建一个专属的 KafkaConsumer 实例。在实际应用中,你可以创建多个 KafkaConsumerRunner 实例,并依次执行启动它们,以实现方案 1 的多线程架构
        • 对于方案 2 来说,核心的代码

          •  1 private final KafkaConsumer<String, String> consumer;
             2 private ExecutorService executors;
             3 ...
             4  
             5  
             6 private int workerNum = ...;
             7 executors = new ThreadPoolExecutor(
             8     workerNum, workerNum, 0L, TimeUnit.MILLISECONDS,
             9     new ArrayBlockingQueue<>(1000), 
            10     new ThreadPoolExecutor.CallerRunsPolicy());
            11  
            12  
            13 ...
            14 while (true)  {
            15     ConsumerRecords<String, String> records = 
            16         consumer.poll(Duration.ofSeconds(1));
            17     for (final ConsumerRecord record : records) {
            18         executors.submit(new Worker(record));
            19     }
            20 }
            21 ..
          • 这段代码最重要的地方是我标为橙色的那个语句:当 Consumer 的 poll 方法返回消息后,由专门的线程池来负责处理具体的消息。调用 poll 方法的主线程不负责消息处理逻辑,这样就实现了方案 2 的多线程架构
      • 小结
        • 结合你的实际业务场景,实现适合你自己的多线程架构,真正做到举一反三、融会贯通,彻底掌握多线程消费的精髓,从而在日后实现更宏大的系统
        • 请你比较一下多线程方案和多进程方案
  • 相关阅读:
    二叉排序树
    安全的终止线程的两种方法
    图的广度优先遍历(BFS)
    图的深度优先遍历(DFS)
    volatile的应用
    二叉树的遍历
    Java-反射
    Java--泛型
    单例模式
    剑指Offer--对称二叉树
  • 原文地址:https://www.cnblogs.com/minimalist/p/12963465.html
Copyright © 2020-2023  润新知