• TensorFlow实战2——TensorFlow实现多层感知机


     1 #coding = utf-8
     2 from tensorflow.examples.tutorials.mnist import input_data
     3 import tensorflow as tf
     4 
     5 mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)
     6 #创建一个IntercativeSession,这样后面的操作就无需指定Session
     7 sess = tf.InteractiveSession()
     8 
     9 #隐含层输出节点设置为300,(在此模型中隐含节点数设在200~1000结果区别不大)
    10 in_units = 784
    11 h1_units = 300
    12 #利用tf.truncated_normal实现截断的正态分布,其标准差为0.1 [-1, 784]x[784, 300]
    13 w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))
    14 b1 = tf.Variable(tf.zeros([h1_units]))
    15 #[784, 300]x[300, 10]
    16 w2 = tf.Variable(tf.zeros([h1_units, 10]))
    17 b2 = tf.Variable(tf.zeros([10]))
    18 
    19 #定义输入x,Dropout的比率keep_prob(通常在训练时小于1,而预测时等于1)
    20 x = tf.placeholder(tf.float32, [None, in_units])
    21 y_ = tf.placeholder(tf.float32, [None, 10])
    22 keep_prob = tf.placeholder(tf.float32)
    23 
    24 #hidden1:隐含层 y = relu(W1*x+b1)
    25 hidden1 = tf.nn.relu(tf.matmul(x, w1) + b1)
    26 '''调用tf.nn.dropout实现Dropout,keep_prob在训练时小于1,用于制造随机性,防止过拟合;
    27 在预测时等于1,即使用全部特征来预测样本类别'''
    28 hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
    29 
    30 #prediction
    31 y = tf.nn.softmax(tf.matmul(hidden1_drop, w2)+b2)
    32 
    33 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
    34 trian_step = tf.train.AdagradOptimizer(0.3).minimize(cross_entropy)
    35 
    36 tf.global_variables_initializer().run()
    37 
    38 for i in range(3000):
    39     batch_xs, batch_ys = mnist.train.next_batch(100)
    40     trian_step.run({x: batch_xs, y_: batch_ys, keep_prob: 0.75})
    41     #out correct prediction
    42     correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    43     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    44     if i % 500 == 0:
    45         print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    1 0.2318
    2 0.9584
    3 0.9709
    4 0.9761
    5 0.9778
    6 0.9782
  • 相关阅读:
    windows用户管理与远程管理
    Linux之基础网络配置
    linux之程序包管理
    linux之特殊权限
    设计模式学习笔记——Prototype原型模式
    设计模式学习笔记——Visitor 访问者模式
    XXX is not a function
    终于决定要开始写自己的博客了,先Mark一下
    element ui 与vue跨域通信操作 和框架语法,contentype
    跨域与版本控制
  • 原文地址:https://www.cnblogs.com/millerfu/p/8094809.html
Copyright © 2020-2023  润新知