• STM32时钟配置方法


    一、在STM32中,有五个时钟源,为HSIHSELSILSEPLL

    HSI是高速内部时钟,RC振荡器,频率为8MHz

    HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz

    LSI是低速内部时钟,RC振荡器,频率为40kHz

    LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

    PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz

    二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:

    对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
    对于少于100脚的产品,有2种接法:第1种:OSC_INOSC_OUT分别通过10K电阻接地。此方法可提高EMC性能;第2种:分别重映射OSC_INOSC_OUTPD0PD1,再配置PD0PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面)节省2个外部电阻。

    三、用HSE时钟,程序设置时钟参数流程
    01、将RCC寄存器重新设置为默认值   RCC_DeInit;
    02、打开外部高速时钟晶振HSE    RCC_HSEConfig(RCC_HSE_ON);
    03、等待外部高速时钟晶振工作    HSEStartUpStatus = RCC_WaitForHSEStartUp();
    04、设置AHB时钟         RCC_HCLKConfig;
    05、设置高速AHB时钟     RCC_PCLK2Config;
    06、设置低速速AHB时钟   RCC_PCLK1Config;
    07、设置PLL              RCC_PLLConfig;
    08、打开PLL              RCC_PLLCmd(ENABLE);
    09、等待PLL工作   while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
    10、设置系统时钟        RCC_SYSCLKConfig;
    11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
    12、打开要使用的外设时钟    RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

    四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

    /*******************************************************************************

    * Function Name  : RCC_Configuration 

    * Description    :  RCC配置(使用外部8MHz晶振)

    * Input            : 

    * Output         : 

    * Return         : 

    *******************************************************************************/

    void RCC_Configuration(void)

    {

      /*将外设RCC寄存器重设为缺省值*/

      RCC_DeInit();

     

      /*设置外部高速晶振(HSE*/

      RCC_HSEConfig(RCC_HSE_ON);   //RCC_HSE_ON——HSE晶振打开(ON)

     

      /*等待HSE起振*/

      HSEStartUpStatus = RCC_WaitForHSEStartUp();

     

      if(HSEStartUpStatus == SUCCESS)        //SUCCESSHSE晶振稳定且就绪

      {

        /*设置AHB时钟(HCLK*/ 

        RCC_HCLKConfig(RCC_SYSCLK_Div1);  //RCC_SYSCLK_Div1——AHB时钟系统时钟

     

        /* 设置高速AHB时钟(PCLK2*/ 

        RCC_PCLK2Config(RCC_HCLK_Div1);   //RCC_HCLK_Div1——APB2时钟= HCLK

     

        /*设置低速AHB时钟(PCLK1*/    

    RCC_PCLK1Config(RCC_HCLK_Div2);   //RCC_HCLK_Div2——APB1时钟= HCLK / 2

     

        /*设置FLASH存储器延时时钟周期数*/

        FLASH_SetLatency(FLASH_Latency_2);    //FLASH_Latency_2  2延时周期

       

     /*选择FLASH预取指缓存的模式*/  

        FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);       // 预取指缓存使能

     

        /*设置PLL时钟源及倍频系数*/ 

        RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);     

    // PLL的输入时钟= HSE时钟频率RCC_PLLMul_9——PLL输入时钟x 9

       

      /*使能PLL */

        RCC_PLLCmd(ENABLE); 

     

        /*检查指定的RCC标志位(PLL准备好标志)设置与否*/   

        while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)      

           {

           }

     

        /*设置系统时钟(SYSCLK*/ 

        RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); 

    //RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

     

        /* PLL返回用作系统时钟的时钟源*/

        while(RCC_GetSYSCLKSource() != 0x08)        //0x08PLL作为系统时钟

           { 

           }

         }

     

     /*使能或者失能APB2外设时钟*/    

      RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | 

    RCC_APB2Periph_GPIOC , ENABLE); 

    //RCC_APB2Periph_GPIOA    GPIOA时钟

    //RCC_APB2Periph_GPIOB    GPIOB时钟

    //RCC_APB2Periph_GPIOC    GPIOC时钟

    //RCC_APB2Periph_GPIOD    GPIOD时钟

    }

    五、时钟频率

    STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。

    在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。

    文件开头就有一个这样的定义: 
    //#define SYSCLK_FREQ_HSE    HSE_Value 
    //#define SYSCLK_FREQ_20MHz 20000000 
    //#define SYSCLK_FREQ_36MHz 36000000 
    //#define SYSCLK_FREQ_48MHz 48000000 
    //#define SYSCLK_FREQ_56MHz 56000000 
    #define SYSCLK_FREQ_72MHz 72000000

    ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:
    #define SYSCLK_FREQ_72MHz 72000000 
    也就是103系列能跑到的最大值72M

    然后这个 C文件继续往下看 
    #elif defined SYSCLK_FREQ_72MHz 
    const uint32_t SystemFrequency         = SYSCLK_FREQ_72MHz;    
    const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;    
    const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;    
    const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);
    const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

    这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: 
    #elif defined SYSCLK_FREQ_72MHz 
    static void SetSysClockTo72(void);

    这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而
    SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了

    所以设置系统时钟的流程就是: 
    首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:

    第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000 
    第二个:调用SystemInit()

    转载自:https://blog.csdn.net/kevinhg/article/details/17517117

  • 相关阅读:
    461. Hamming Distance
    342. Power of Four
    326. Power of Three
    368. Largest Divisible Subset java solutions
    95. Unique Binary Search Trees II java solutions
    303. Range Sum Query
    160. Intersection of Two Linked Lists java solutions
    88. Merge Sorted Array java solutions
    67. Add Binary java solutions
    14. Longest Common Prefix java solutions
  • 原文地址:https://www.cnblogs.com/micro-st/p/8654465.html
Copyright © 2020-2023  润新知