• 深度学习面试题04:随机梯度下降法、批量梯度下降法、小批量梯度下降


    目录

      一元线性回归模型

      一元线性回归代价函数图像

      梯度下降求解

      SGD、BGD、Mini-batchGD的特点

      参考资料


    在《深度学习面试题03改进版梯度下降法Adagrad、RMSprop、Momentum、Adam》中讲到了多种改进的梯度下降公式。而这篇文章和03篇描述的不是一个事情,我们从一个例子说起,就知道改良的GD算法和本节介绍的GD算法的不同点了。

    一元线性回归模型

    举例:以房屋面积预测房屋价格

    假设函数可以设置为

     返回目录

    一元线性回归代价函数图像

     

    每一个预测值都与真实值存在一个差距,差距的平方和就可以作为一个代价函数。

    因此代价函数为:

    如下图所示(为方便观察,做了一个截断)

    代码为:

     View Code

     返回目录

    梯度下降求解

    当使用梯度下降法求解时,假设初始化(w,b)=(3.5,3.5)

    代价函数关于w和b的偏导数为:

    重点来了:Adagrad、RMSprop、Adam等算法都是建立在偏导数之上的,他们并不关心上式中N的取值,N取1,取100,还是取N,Adagrad、RMSprop、Adam等算法都可以运行。

    随机梯度下降法(Stochastic Gradient Descent,SGD),批量梯度下降法(Batch Gradient Descent,BGD),小批量梯度下降法(Mini-batch Gradient Descent,Mini-batchGD)则是研究这里的N的大小的

    如果N=1,此时为SGD,计算代价函数梯度的时候只考虑一个样本;

    如果N=样本容量,此时为BGD,计算代价函数梯度的时候考虑全部样本;

    如果N=m,1<m<N,此时为Mini-batchGD,计算代价函数梯度的时候考虑一小批样本。

     返回目录

    SGD、BGD、Mini-batchGD的特点

    SGD计算根据随机一个样本构造出来的代价函数的梯度,这与计算根据全部样本构造出来的代价函数的梯度肯定有偏差,也许是一个不好的梯度方向,下降时候并不沿着最有的方向下降,但是优点是可以快速的计算一个近似梯度,因为计算量缩减到原来的1/N。

    BGD计算根据全部样本的构造出来的代价函数的梯度,方向肯定是沿着当前最优的下降方向,但是计算代价较高,当数据集较大时,相当耗时。

    Mini-batchGD就不用说了,是前两者的折中

    下面用图像演示一下BGD和SGD下降的过程

    BGD效果如下

    BGD代码如下:

     View Code

    SGD效果如下:

    很明显SGD在下降过程中存在方向不稳定的情况,但是最终还是能收敛到最优点

    SGD代码如下:

     View Code

     返回目录

    参考资料

    《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

  • 相关阅读:
    Light OJ 1067 Combinations (乘法逆元)
    hdu1172猜数字(暴力枚举)
    hdu 2266 How Many Equations Can You Find(DFS)
    项目之问卷调查问题
    Django之Modelform组件
    GIT
    form组件的总结
    总结django知识点
    djang-分页
    Django-Ajax
  • 原文地址:https://www.cnblogs.com/mfryf/p/11381179.html
Copyright © 2020-2023  润新知