对于二叉树的操作,做一个简单的总结;
Tips:针对于不论什么树的操作,首先须要推断是不是空树
树的结构体:
int index = 0;
typedef struct BiTree
{
int data;
BiTree* lchild;
BiTree* rchild;
}*Tree;
创建树的操作:
void createBT(Tree &root,int data[])
{
int value = data[index++];
if(value == -1)
{
root = NULL;
}
else
{
root = new BiTree;
root->data = value;
createBT(root->lchild,data);
createBT(root->rchild,data);
}
}
计算结点个数:
int Count_Leaf(Tree &root)
{
int count = 0;
if(!root)
{
return count;
}
count = Count_Leaf(root->lchild)+Count_Leaf(root->rchild)+1;
return count;
}
计算树中叶子结点个数
int Count(Tree &root)
{
if(!root)
return 0;
if(root->lchild == NULL && root->rchild == NULL)
return 1;
int numLeft = Count(root->lchild);
int numRight = Count(root->rchild);
return (numLeft+numRight);
}
二叉树的深度:
int BT_depth(Tree &root)
{
if(!root)
return 0;
int depth_left = BT_depth(root->lchild)+1;
int depth_right = BT_depth(root->rchild)+1;
return depth_left>depth_right?depth_left:depth_right;
}
二叉树的bfs遍历:
void Level(Tree &root)
{
cout << "二叉树的层次遍历" << endl;
queue<BiTree*> que;
if(!root)
return;
que.push(root);
while(!que.empty())
{
root = que.front();
que.pop();
cout << root->data << " ";
if(root->lchild)
que.push(root->lchild);
if(root->rchild)
que.push(root->rchild);
}
}
二叉树的dfs遍历:
void dfs(Tree &root)
{
stack<BiTree*> s;
if(!root)
return;
s.push(root);
while(!s.empty())
{
root = s.top();
cout << root->data << " ";
s.pop();
if(root->rchild)
s.push(root->rchild);
if(root->lchild)
s.push(root->lchild);
}
}
二叉树第K层结点数:
int K_level(Tree &root,int k)
{
if(!root || k<1)
return 0;
if(k == 1)
return 1;
int numLeft = K_level(root->lchild,k-1);
int numright = K_level(root->rchild,k-1);
return (numLeft+numright);
}
推断俩个二叉树是否是一样的?
bool Same_BT(Tree &root1,Tree &root2)
{
if(!root1 && !root2)
return true;
if(!root1 || !root2)
return false;
bool leftSame = Same_BT(root1->lchild,root2->lchild);
bool rightSame = Same_BT(root1->rchild,root2->rchild);
return (leftSame&&rightSame);
}
二叉树的镜像:
BiTree* Mirror(Tree &root)
{
if(!root)
return NULL;
BiTree* left = Mirror(root->lchild);
BiTree* right = Mirror(root->rchild);
root->lchild = right;
root->rchild = left;
return root;
}
是否是平衡二叉树:
bool isAVL(Tree &root,int &height)
{
if(!root)
{
height = 0;
return true;
}
int heightLeft;
bool left = isAVL(root->lchild,heightLeft);
int heightRight;
bool right = isAVL(root->rchild,heightRight);
if(left && right && abs(heightLeft-heightRight)<=1)
{
height = max(heightLeft,heightRight)+1;
return true;
}
else
{
height = max(heightLeft,heightRight)+1;
return false;
}
}
操作的main()函数:
int main()
{
int data[] = {8,6,4,-1,-1,7,-1,-1,10,9,-1,-1,11,-1,-1};
int data1[] = {8,6,4,-1,-1,7,-1,-1,10,9,-1,-1,11,-1,-1};
Tree tree;
Tree tree1;
createBT(tree,data);
/*
//int height;
if(isAVL(tree,height))
{
cout << "isAVL" << endl;
}*/
createBT(tree1,data1);
if(Same_BT(tree,tree1))
{
cout<< "这俩二叉树是一样的" << endl;
}
else
{
cout << "这俩二叉树是不一样的" << endl;
}
//cout << "二叉树的叶子节点个数" << endl;
//cout<<Count_Leaf(tree);
//cout<<Count(tree)<<endl;
//cout<<BT_depth(tree);*/
//Level(tree);
//cout << endl;
//Mirror(tree);
//Level(tree);
//cout<< endl;
// dfs(tree);
//cout<< K_level(tree,3)<<endl;
return 0;
}