Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9650 | Accepted: 6856 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define LL long long struct node{ LL s11 , s12 , s21 , s22 ; }; node f(node a,node b) { node p ; p.s11 = (a.s11*b.s11 + a.s12*b.s21)%10000 ; p.s12 = (a.s11*b.s12 + a.s12*b.s22)%10000 ; p.s21 = (a.s21*b.s11 + a.s22*b.s21)%10000 ; p.s22 = (a.s21*b.s12 + a.s22*b.s22)%10000 ; return p ; } node pow(node p,int n) { node q ; q.s11 = q.s22 = 1 ; q.s12 = q.s21 = 0 ; if(n == 0) return q ; q = pow(p,n/2); q = f(q,q); if( n%2 ) q = f(q,p); return q ; } int main() { int n ; node p ; while(scanf("%d", &n) && n != -1) { p.s11 = p.s12 = p.s21 = 1 ; p.s22 = 0 ; p = pow(p,n); printf("%d ", p.s12); } return 0; }