• 动态规划——Best Time to Buy and Sell Stock III


    题意:用一个数组表示股票每天的价格,数组的第i个数表示股票在第i天的价格。 如果最多进行两次交易,但必须在买进一只股票前清空手中的股票,求最大的收益。
    示例 1:
    Input: [3,3,5,0,0,3,1,4]
    Output: 6
    Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
                 Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
    示例 2:
    Input: [1,2,3,4,5]
    Output: 4
    Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
                 Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
                 engaging multiple transactions at the same time. You must sell before buying again.
    示例 3:
    Input: [7,6,4,3,1]
    Output: 0
    Explanation: In this case, no transaction is done, i.e. max profit = 0.
     
    之前有一个Best Time to Buy and Sell Stock I ,比这个题简单点儿,那个题是最多一次操作,求最大的收益。同样是使用动态规划,由于这次允许最多两次操作,只需要分两次,
    将输入的整个周期通过for对周期长度限制(第一个子周期长度递增且不超过原周期长)并分割成两个子周期先后进行dp数组的递推即可。
     
     1 int maxProfit(int* prices, int pricesSize) {
     2      int ans = 0;
     3     if (pricesSize > 2){
     4         int*dp = (int*)malloc(pricesSize*sizeof(int));
     5         dp[0] = 0;
     6         int ans2 = 0;
     7         for (int i = 2; i <= pricesSize; i++){
     8             dp[0] = 0;
     9             ans2 = 0;
    10             for (int j = 1; j<i; j++){
    11                 dp[j] = (prices[j] + dp[j - 1] - prices[j - 1]) > 0 ? (prices[j] + dp[j - 1] - prices[j - 1]) : 0;
    12                 ans2 = ans2 >= dp[j] ? ans2 : dp[j];
    13             }
    14             ans = ans >= ans2 ? ans : ans2;
    15             if (i < pricesSize)dp[i] = 0;
    16             for (int k = i+1; k<pricesSize; k++){
    17                 dp[k] = (prices[k] + dp[k - 1] - prices[k - 1]) > 0 ? (prices[k] + dp[k - 1] - prices[k - 1]) : 0;
    18                 ans = ans >= (dp[k]+ans2) ? ans : (dp[k]+ans2);
    19             }
    20         }
    21         //free(dp);
    22     }
    23     else if (pricesSize == 2){
    24         ans = (prices[1] - prices[0]) > 0 ? (prices[1] - prices[0]):0;
    25     }
    26     else ans = 0;
    27     return ans;
    28 }

    但是非常搞笑的是我这个代码虽然在LeetCode上成功AC,但是应该是最差的一个解决方案。。。但是思路上非常便于理解

  • 相关阅读:
    设计模式--单例模式(Singleton)
    C# 和.Net 特性
    Fiddler 教程
    史铁生遗作:昼信基督夜信佛
    如何实现早日退休理想
    Linux 常用
    Golang 读书
    Python 读书
    RbMQ 简介
    UML 简介
  • 原文地址:https://www.cnblogs.com/messi2017/p/9892178.html
Copyright © 2020-2023  润新知