摘自:http://blog.csdn.net/zhangerqing/article/details/8239539
我们接着讨论设计模式。上篇文章我讲完了5种创建型模式。这章開始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
当中对象的适配器模式是各种模式的起源,我们看以下的图:
6、适配器模式(Adapter)
适配器模式将某个类的接口转换成client期望的还有一个接口表示,目的是消除因为接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先。我们来看看类的适配器模式,先看类图:
核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:
- public class Source {
- public void method1() {
- System.out.println("this is original method!");
- }
- }
public class Source { public void method1() { System.out.println("this is original method!"); } }
- public interface Targetable {
- /* 与原类中的方法同样 */
- public void method1();
- /* 新类的方法 */
- public void method2();
- }
public interface Targetable { /* 与原类中的方法同样 */ public void method1(); /* 新类的方法 */ public void method2(); }
- public class Adapter extends Source implements Targetable {
- @Override
- public void method2() {
- System.out.println("this is the targetable method!");
- }
- }
public class Adapter extends Source implements Targetable { @Override public void method2() { System.out.println("this is the targetable method!"); } }
Adapter类继承Source类。实现Targetable接口,以下是測试类:
- public class AdapterTest {
- public static void main(String[] args) {
- Targetable target = new Adapter();
- target.method1();
- target.method2();
- }
- }
public class AdapterTest { public static void main(String[] args) { Targetable target = new Adapter(); target.method1(); target.method2(); } }
输出:
this is original method!
this is the targetable method!
这样Targetable接口的实现类就具有了Source类的功能。
对象的适配器模式
基本思路和类的适配器模式同样。仅仅是将Adapter类作改动,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:
仅仅须要改动Adapter类的源代码就可以:
- public class Wrapper implements Targetable {
- private Source source;
- public Wrapper(Source source){
- super();
- this.source = source;
- }
- @Override
- public void method2() {
- System.out.println("this is the targetable method!");
- }
- @Override
- public void method1() {
- source.method1();
- }
- }
public class Wrapper implements Targetable { private Source source; public Wrapper(Source source){ super(); this.source = source; } @Override public void method2() { System.out.println("this is the targetable method!"); } @Override public void method1() { source.method1(); } }
測试类:
- public class AdapterTest {
- public static void main(String[] args) {
- Source source = new Source();
- Targetable target = new Wrapper(source);
- target.method1();
- target.method2();
- }
- }
public class AdapterTest { public static void main(String[] args) { Source source = new Source(); Targetable target = new Wrapper(source); target.method1(); target.method2(); } }
输出与第一种一样,仅仅是适配的方法不同而已。
第三种适配器模式是接口的适配器模式,接口的适配器是这种:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时。必须实现该接口的全部方法,这明显有时比較浪费,由于并非全部的方法都是我们须要的。有时仅仅须要某一些,此处为了解决问题,我们引入了接口的适配器模式。借助于一个抽象类,该抽象类实现了该接口,实现了全部的方法。而我们不和原始的接口打交道,仅仅和该抽象类取得联系。所以我们写一个类,继承该抽象类,重写我们须要的方法即可。
看一下类图:
这个非常好理解,在实际开发中。我们也常会遇到这样的接口中定义了太多的方法。以致于有时我们在一些实现类中并非都须要。看代码:
- public interface Sourceable {
- public void method1();
- public void method2();
- }
public interface Sourceable { public void method1(); public void method2(); }
抽象类Wrapper2:
- public abstract class Wrapper2 implements Sourceable{
- public void method1(){}
- public void method2(){}
- }
public abstract class Wrapper2 implements Sourceable{ public void method1(){} public void method2(){} }
- public class SourceSub1 extends Wrapper2 {
- public void method1(){
- System.out.println("the sourceable interface's first Sub1!");
- }
- }
public class SourceSub1 extends Wrapper2 { public void method1(){ System.out.println("the sourceable interface's first Sub1!"); } }
- public class SourceSub2 extends Wrapper2 {
- public void method2(){
- System.out.println("the sourceable interface's second Sub2!");
- }
- }
public class SourceSub2 extends Wrapper2 { public void method2(){ System.out.println("the sourceable interface's second Sub2!"); } }
- public class WrapperTest {
- public static void main(String[] args) {
- Sourceable source1 = new SourceSub1();
- Sourceable source2 = new SourceSub2();
- source1.method1();
- source1.method2();
- source2.method1();
- source2.method2();
- }
- }
public class WrapperTest { public static void main(String[] args) { Sourceable source1 = new SourceSub1(); Sourceable source2 = new SourceSub2(); source1.method1(); source1.method2(); source2.method1(); source2.method2(); } }
測试输出:
the sourceable interface's first Sub1!
the sourceable interface's second Sub2!
达到了我们的效果!
讲了这么多,总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足还有一个新接口的类时,能够使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口就可以。
对象的适配器模式:当希望将一个对象转换成满足还有一个新接口的对象时,能够创建一个Wrapper类。持有原类的一个实例,在Wrapper类的方法中。调用实例的方法即可。
接口的适配器模式:当不希望实现一个接口中全部的方法时,能够创建一个抽象类Wrapper。实现全部方法,我们写别的类的时候,继承抽象类就可以。
7、装饰模式(Decorator)
顾名思义,装饰模式就是给一个对象添加一些新的功能,并且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例。关系图例如以下:
Source类是被装饰类,Decorator类是一个装饰类,能够为Source类动态的加入一些功能,代码例如以下:
- public interface Sourceable {
- public void method();
- }
public interface Sourceable { public void method(); }
- public class Source implements Sourceable {
- @Override
- public void method() {
- System.out.println("the original method!");
- }
- }
public class Source implements Sourceable { @Override public void method() { System.out.println("the original method!"); } }
- public class Decorator implements Sourceable {
- private Sourceable source;
- public Decorator(Sourceable source){
- super();
- this.source = source;
- }
- @Override
- public void method() {
- System.out.println("before decorator!");
- source.method();
- System.out.println("after decorator!");
- }
- }
public class Decorator implements Sourceable { private Sourceable source; public Decorator(Sourceable source){ super(); this.source = source; } @Override public void method() { System.out.println("before decorator!"); source.method(); System.out.println("after decorator!"); } }
測试类:
- public class DecoratorTest {
- public static void main(String[] args) {
- Sourceable source = new Source();
- Sourceable obj = new Decorator(source);
- obj.method();
- }
- }
public class DecoratorTest { public static void main(String[] args) { Sourceable source = new Source(); Sourceable obj = new Decorator(source); obj.method(); } }
输出:
before decorator!
the original method!
after decorator!
装饰器模式的应用场景:
1、须要扩展一个类的功能。
2、动态的为一个对象添加功能。并且还能动态撤销。(继承不能做到这一点,继承的功能是静态的。不能动态增删。
)
缺点:产生过多相似的对象,不易排错!
8、代理模式(Proxy)
事实上每一个模式名称就表明了该模式的作用。代理模式就是多一个代理类出来,替原对象进行一些操作,比方我们在租房子的时候回去找中介。为什么呢?由于你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司。我们须要请律师,由于律师在法律方面有专长,能够替我们进行操作。表达我们的想法。
先来看看关系图:
依据上文的阐述,代理模式就比較easy的理解了。我们看下代码:
- public interface Sourceable {
- public void method();
- }
public interface Sourceable { public void method(); }
- public class Source implements Sourceable {
- @Override
- public void method() {
- System.out.println("the original method!");
- }
- }
public class Source implements Sourceable { @Override public void method() { System.out.println("the original method!"); } }
- public class Proxy implements Sourceable {
- private Source source;
- public Proxy(){
- super();
- this.source = new Source();
- }
- @Override
- public void method() {
- before();
- source.method();
- atfer();
- }
- private void atfer() {
- System.out.println("after proxy!");
- }
- private void before() {
- System.out.println("before proxy!");
- }
- }
public class Proxy implements Sourceable { private Source source; public Proxy(){ super(); this.source = new Source(); } @Override public void method() { before(); source.method(); atfer(); } private void atfer() { System.out.println("after proxy!"); } private void before() { System.out.println("before proxy!"); } }
測试类:
- public class ProxyTest {
- public static void main(String[] args) {
- Sourceable source = new Proxy();
- source.method();
- }
- }
public class ProxyTest { public static void main(String[] args) { Sourceable source = new Proxy(); source.method(); } }
输出:
before proxy!
the original method!
after proxy!
代理模式的应用场景:
假设已有的方法在使用的时候须要对原有的方法进行改进。此时有两种办法:
1、改动原有的方法来适应。这样违反了“对扩展开放,对改动关闭”的原则。
2、就是採用一个代理类调用原有的方法,且对产生的结果进行控制。这样的方法就是代理模式。
使用代理模式,能够将功能划分的更加清晰。有助于后期维护!
9、外观模式(Facade)
外观模式是为了解决类与类之家的依赖关系的。像spring一样,能够将类和类之间的关系配置到配置文件里。而外观模式就是将他们的关系放在一个Facade类中,减少了类类之间的耦合度。该模式中没有涉及到接口。看下类图:(我们以一个计算机的启动过程为例)
我们先看下实现类:
- public class CPU {
- public void startup(){
- System.out.println("cpu startup!");
- }
- public void shutdown(){
- System.out.println("cpu shutdown!");
- }
- }
public class CPU { public void startup(){ System.out.println("cpu startup!"); } public void shutdown(){ System.out.println("cpu shutdown!"); } }
- public class Memory {
- public void startup(){
- System.out.println("memory startup!");
- }
- public void shutdown(){
- System.out.println("memory shutdown!");
- }
- }
public class Memory { public void startup(){ System.out.println("memory startup!"); } public void shutdown(){ System.out.println("memory shutdown!"); } }
- public class Disk {
- public void startup(){
- System.out.println("disk startup!");
- }
- public void shutdown(){
- System.out.println("disk shutdown!");
- }
- }
public class Disk { public void startup(){ System.out.println("disk startup!"); } public void shutdown(){ System.out.println("disk shutdown!"); } }
- public class Computer {
- private CPU cpu;
- private Memory memory;
- private Disk disk;
- public Computer(){
- cpu = new CPU();
- memory = new Memory();
- disk = new Disk();
- }
- public void startup(){
- System.out.println("start the computer!");
- cpu.startup();
- memory.startup();
- disk.startup();
- System.out.println("start computer finished!");
- }
- public void shutdown(){
- System.out.println("begin to close the computer!");
- cpu.shutdown();
- memory.shutdown();
- disk.shutdown();
- System.out.println("computer closed!");
- }
- }
public class Computer { private CPU cpu; private Memory memory; private Disk disk; public Computer(){ cpu = new CPU(); memory = new Memory(); disk = new Disk(); } public void startup(){ System.out.println("start the computer!"); cpu.startup(); memory.startup(); disk.startup(); System.out.println("start computer finished!"); } public void shutdown(){ System.out.println("begin to close the computer!"); cpu.shutdown(); memory.shutdown(); disk.shutdown(); System.out.println("computer closed!"); } }
User类例如以下:
- public class User {
- public static void main(String[] args) {
- Computer computer = new Computer();
- computer.startup();
- computer.shutdown();
- }
- }
public class User { public static void main(String[] args) { Computer computer = new Computer(); computer.startup(); computer.shutdown(); } }
输出:
start the computer!
cpu startup!
memory startup!
disk startup!
start computer finished!
begin to close the computer!
cpu shutdown!
memory shutdown!
disk shutdown!
computer closed!
假设我们没有Computer类。那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,改动一个类,可能会带来其它类的改动,这不是我们想要看到的。有了Computer类。他们之间的关系被放在了Computer类里,这样就起到了解耦的作用。这,就是外观模式。
10、桥接模式(Bridge)
桥接模式就是把事物和其详细实现分开,使他们能够各自独立的变化。桥接的用意是:将抽象化与实现化解耦。使得二者能够独立变化,像我们经常使用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换。基本不须要动太多的代码,甚至丝毫不用动。原因就是JDBC提供统一接口,每一个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接即可了。我们来看看关系图:
实现代码:
先定义接口:
- public interface Sourceable {
- public void method();
- }
public interface Sourceable { public void method(); }
分别定义两个实现类:
- public class SourceSub1 implements Sourceable {
- @Override
- public void method() {
- System.out.println("this is the first sub!");
- }
- }
public class SourceSub1 implements Sourceable { @Override public void method() { System.out.println("this is the first sub!"); } }
- public class SourceSub2 implements Sourceable {
- @Override
- public void method() {
- System.out.println("this is the second sub!");
- }
- }
public class SourceSub2 implements Sourceable { @Override public void method() { System.out.println("this is the second sub!"); } }
定义一个桥,持有Sourceable的一个实例:
- public abstract class Bridge {
- private Sourceable source;
- public void method(){
- source.method();
- }
- public Sourceable getSource() {
- return source;
- }
- public void setSource(Sourceable source) {
- this.source = source;
- }
- }
public abstract class Bridge { private Sourceable source; public void method(){ source.method(); } public Sourceable getSource() { return source; } public void setSource(Sourceable source) { this.source = source; } }
- public class MyBridge extends Bridge {
- public void method(){
- getSource().method();
- }
- }
public class MyBridge extends Bridge { public void method(){ getSource().method(); } }
測试类:
- public class BridgeTest {
- public static void main(String[] args) {
- Bridge bridge = new MyBridge();
- /*调用第一个对象*/
- Sourceable source1 = new SourceSub1();
- bridge.setSource(source1);
- bridge.method();
- /*调用第二个对象*/
- Sourceable source2 = new SourceSub2();
- bridge.setSource(source2);
- bridge.method();
- }
- }
public class BridgeTest { public static void main(String[] args) { Bridge bridge = new MyBridge(); /*调用第一个对象*/ Sourceable source1 = new SourceSub1(); bridge.setSource(source1); bridge.method(); /*调用第二个对象*/ Sourceable source2 = new SourceSub2(); bridge.setSource(source2); bridge.method(); } }
output:
this is the first sub!
this is the second sub!
这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明确了,由于这个图是我们JDBC连接的原理。有数据库学习基础的,一结合就都懂了。
11、组合模式(Composite)
组合模式有时又叫部分-总体模式在处理类似树形结构的问题时比較方便,看看关系图:
直接来看代码:
- public class TreeNode {
- private String name;
- private TreeNode parent;
- private Vector<TreeNode> children = new Vector<TreeNode>();
- public TreeNode(String name){
- this.name = name;
- }
- public String getName() {
- return name;
- }
- public void setName(String name) {
- this.name = name;
- }
- public TreeNode getParent() {
- return parent;
- }
- public void setParent(TreeNode parent) {
- this.parent = parent;
- }
- //加入孩子节点
- public void add(TreeNode node){
- children.add(node);
- }
- //删除孩子节点
- public void remove(TreeNode node){
- children.remove(node);
- }
- //取得孩子节点
- public Enumeration<TreeNode> getChildren(){
- return children.elements();
- }
- }
public class TreeNode { private String name; private TreeNode parent; private Vector<TreeNode> children = new Vector<TreeNode>(); public TreeNode(String name){ this.name = name; } public String getName() { return name; } public void setName(String name) { this.name = name; } public TreeNode getParent() { return parent; } public void setParent(TreeNode parent) { this.parent = parent; } //加入孩子节点 public void add(TreeNode node){ children.add(node); } //删除孩子节点 public void remove(TreeNode node){ children.remove(node); } //取得孩子节点 public Enumeration<TreeNode> getChildren(){ return children.elements(); } }
- public class Tree {
- TreeNode root = null;
- public Tree(String name) {
- root = new TreeNode(name);
- }
- public static void main(String[] args) {
- Tree tree = new Tree("A");
- TreeNode nodeB = new TreeNode("B");
- TreeNode nodeC = new TreeNode("C");
- nodeB.add(nodeC);
- tree.root.add(nodeB);
- System.out.println("build the tree finished!");
- }
- }
public class Tree { TreeNode root = null; public Tree(String name) { root = new TreeNode(name); } public static void main(String[] args) { Tree tree = new Tree("A"); TreeNode nodeB = new TreeNode("B"); TreeNode nodeC = new TreeNode("C"); nodeB.add(nodeC); tree.root.add(nodeB); System.out.println("build the tree finished!"); } }
使用场景:将多个对象组合在一起进行操作,经常使用于表示树形结构中。比如二叉树,数等。
12、享元模式(Flyweight)
享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候能够降低内存的开销,通常与工厂模式一起使用。
FlyWeightFactory负责创建和管理享元单元,当一个client请求时。工厂须要检查当前对象池中是否有符合条件的对象,假设有。就返回已经存在的对象,假设没有。则创建一个新对象,FlyWeight是超类。一提到共享池,我们非常easy联想到Java里面的JDBC连接池,想想每一个连接的特点。我们不难总结出:适用于作共享的一些个对象。他们有一些共同拥有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname。这些属性对于每一个连接来说都是一样的。所以就适合用享元模式来处理。建一个工厂类。将上述类似属性作为内部数据。其他的作为外部数据,在方法调用时。当做參数传进来,这样就节省了空间。降低了实例的数量。
看个样例:
看下数据库连接池的代码:
- public class ConnectionPool {
- private Vector<Connection> pool;
- /*公有属性*/
- private String url = "jdbc:mysql://localhost:3306/test";
- private String username = "root";
- private String password = "root";
- private String driverClassName = "com.mysql.jdbc.Driver";
- private int poolSize = 100;
- private static ConnectionPool instance = null;
- Connection conn = null;
- /*构造方法,做一些初始化工作*/
- private ConnectionPool() {
- pool = new Vector<Connection>(poolSize);
- for (int i = 0; i < poolSize; i++) {
- try {
- Class.forName(driverClassName);
- conn = DriverManager.getConnection(url, username, password);
- pool.add(conn);
- } catch (ClassNotFoundException e) {
- e.printStackTrace();
- } catch (SQLException e) {
- e.printStackTrace();
- }
- }
- }
- /* 返回连接到连接池 */
- public synchronized void release() {
- pool.add(conn);
- }
- /* 返回连接池中的一个数据库连接 */
- public synchronized Connection getConnection() {
- if (pool.size() > 0) {
- Connection conn = pool.get(0);
- pool.remove(conn);
- return conn;
- } else {
- return null;
- }
- }
- }
public class ConnectionPool { private Vector<Connection> pool; /*公有属性*/ private String url = "jdbc:mysql://localhost:3306/test"; private String username = "root"; private String password = "root"; private String driverClassName = "com.mysql.jdbc.Driver"; private int poolSize = 100; private static ConnectionPool instance = null; Connection conn = null; /*构造方法。做一些初始化工作*/ private ConnectionPool() { pool = new Vector<Connection>(poolSize); for (int i = 0; i < poolSize; i++) { try { Class.forName(driverClassName); conn = DriverManager.getConnection(url, username, password); pool.add(conn); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (SQLException e) { e.printStackTrace(); } } } /* 返回连接到连接池 */ public synchronized void release() { pool.add(conn); } /* 返回连接池中的一个数据库连接 */ public synchronized Connection getConnection() { if (pool.size() > 0) { Connection conn = pool.get(0); pool.remove(conn); return conn; } else { return null; } } }
通过连接池的管理。实现了数据库连接的共享。不须要每一次都又一次创建连接,节省了数据库又一次创建的开销。提升了系统的性能!