• HDU1695-GCD(数论-欧拉函数-容斥)


    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5454    Accepted Submission(s): 1957


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     

    Output
    For each test case, print the number of choices. Use the format in the example.
     

    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     

    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     

    题意: 求(1,a) 和(1,b) 两个区间 公约数为k的对数的个数

    思路:将a,b分别处以k,就能够转化为(1,a/k)和(1,b/k)两个区间两两互质的个数,能够先用欧拉函数求出(1,a)两两互质的个数,(a+1。b) 能够分解质因数。由于质因数的个数最多为7能够用容斥原理计算。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <queue>
    using namespace std;
    
    const int maxn = 10000+10;
    const int maxxn = 100000+10;
    typedef long long ll;
    int a,b,gcd;
    ll ans;
    bool isPrime[maxn];
    ll minDiv[maxxn],phi[maxxn],sum[maxxn];
    vector<int> prime,cnt[maxxn],digit[maxxn];
    
    void getPrime(){
        prime.clear();
        memset(isPrime,1,sizeof isPrime);
        for(int i = 2;i < maxn; i++){
            if(isPrime[i]){
                prime.push_back(i);
                for(int j = i*i; j < maxn; j+=i){
                    isPrime[j] = 0;
                }
            }
        }
    }
    
    void getPhi(){
        for(ll i = 1; i < maxxn; i++){
            minDiv[i] = i;
        }
        for(ll i = 2; i*i < maxxn; i++){
            if(minDiv[i]==i){
                for(int j = i*i; j < maxxn; j += i){
                    minDiv[j] = i;
                }
            }
        }
        phi[1] = 1;
        sum[1] = 1;
        for(ll i = 2; i < maxxn; i++){
            phi[i] = phi[i/minDiv[i]];
            if((i/minDiv[i])%minDiv[i]==0){
                phi[i] *= minDiv[i];
            }else{
                phi[i] *= minDiv[i]-1;
            }
            sum[i] = phi[i]+sum[i-1];
        }
    }
    
    void getDigit(){
        for(ll i = 1; i < maxxn; i++){
            int x = i;
            for(int j = 0; j < prime.size()&&x >= prime[j]; j++){
                if(x%prime[j]==0){
                    digit[i].push_back(prime[j]);
                    int t = 0;
                    while(x%prime[j]==0){
                        t++;
                        x /= prime[j];
                    }
                    cnt[i].push_back(t);
                }
            }
            if(x!=1){
                digit[i].push_back(x);
                cnt[i].push_back(1);
            }
        }
    }
    
    int main(){
        getPrime();
        getPhi();
        getDigit();
        int ncase,T=1;
        cin >> ncase;
        while(ncase--){
            int t1,t2;
            scanf("%d%d%d%d%d",&t1,&a,&t2,&b,&gcd);
            if(gcd==0){
                printf("Case %d: 0
    ",T++,ans);
                continue;
            }else{
                if(a > b) swap(a,b);
                a /= gcd,b /= gcd;
                ans = sum[a];
                for(ll i = a+1; i <= b; i++){
                    int d = digit[i].size();
                    int t = 0;
                    vector<int> di;
                    for(int k = 1; k < (1<<d); k++){
                        di.clear();
                        for(int f = 0; f < d; f++){
                            if(k&(1<<f)){
                                di.push_back(digit[i][f]);
                            }
                        }
                        int ji = 1;
                        for(int f = 0; f < di.size(); f++){
                            ji *= di[f];
                        }
                        if(di.size()%2==0){
                            t -= a/ji;
                        }else{
                            t += a/ji;
                        }
                    }
                    ans += a-t;
                }
                printf("Case %d: ",T++);
                cout<<ans<<endl;
            }
    
        }
        return 0;
    }
    


  • 相关阅读:
    fetch的优点
    gitignore不起作用
    css动画和js动画区别
    工业家居气象空气环境质量监测仪记录数据甲醛PM2.5二氧化碳大气压温湿度
    摆脱淘宝、京东、拼多多内部引流消费规则,自建网站利用其完成支付
    语音朗读模块TTS文本变量实时转语音朗读科大讯飞XFS5152CE芯片AI
    PCB altium designer AD10 AD20 导出DWG CAD文件 过孔问题
    【Creator3】如何在3D场景中实现炫酷传送门,和简单的小地图功能,RenderTexture技术应用
    B站视频:【Creator3】好玩的编队代码 魔性排列停不下来 附源码及出处
    B站视频:《四图猜词》 Part3 | CocosCreator游戏开发教程
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5203820.html
Copyright © 2020-2023  润新知