Description
You are not given n non-negative integersX0,X1,..., Xn-1 less than220, but they do exist, and their values never change.
I'll gradually provide you some facts about them, and ask you some questions.
There are two kinds of facts, plus one kind of question:
Format | Meaning |
I p v | I tell you Xp = v |
I p q v | I tell you Xp XOR Xq = v |
Q k p1 p2...pk | Please tell me the value of Xp1 XOR Xp2 XOR...XOR Xpk |
Input
There will be at most 10 test cases. Each case begins with two integers n and Q (1n20, 000, 2Q40, 000). Each of the following lines contains either a fact or a question, formatted as stated above. Thek parameter in the questions will be a positive integer not greater than 15, and thev parameter in the facts will be a non-negative integer less than220. The last case is followed byn = Q = 0, which should not be processed.
Output
For each test case, print the case number on its own line, then the answers, one on each one. If you can't deduce the answer for a particular question, from the facts I provide youbefore that question, print ``I don't know.", without quotes. If thei-th fact (don't count questions)cannot be consistent with all the facts before that, print ``The firsti facts are conflicting.", then keep silence for everything after that (including facts and questions). Print a blank line after the output of each test case.
Sample Input
2 6 I 0 1 3 Q 1 0 Q 2 1 0 I 0 2 Q 1 1 Q 1 0 3 3 I 0 1 6 I 0 2 2 Q 2 1 2 2 4 I 0 1 7 Q 2 0 1 I 0 1 8 Q 2 0 1 0 0
Sample Output
Case 1: I don't know. 3 1 2 Case 2: 4 Case 3: 7 The first 2 facts are conflicting.
题意:
有n(n<=20000)个未知的整数X0,X1,X2...Xn-1,有下面Q个(Q<=40000)操作:
I p v :告诉你Xp=v
I p q v :告诉你Xp Xor Xq=v
Q k p1 p2 … pk : 询问 Xp1 Xor Xp2 .. Xor Xpk。 k不大于15。
假设当前的I跟之前的有冲突的话,跳出
思路:并查集题目,深深的感到没好好做并查集的无力感,知道是并查集却不知道怎么下手,说一下思路:
1.对于每次的询问,我们并不须要知道每一个数的大小也能够推出来结果,对于这样的: I p v
的我们能够虚拟一个数xn=0,这样就能够有通式p^q=v,由于p^0=p。
虚根xn是不能变的,它的子孙都有确定的值
2.我们如果偏移量val[i]=x[i]^x[fa[i]],还有熟悉a^b = 1 , b^c = 2 , 那么 a^c = 1^2 = 3,还有异或能够互相转化:a^b=c -> a^b^b=c^b -> a = b^c
3.为什么会用到并查集呢,由于对于同一个集合里的话我们能够通过他们与根的偏移量和根的值来知道两个数的异或结果,这样更方便计算,同一时候计算:Q k x1 .. xk 的时候。就能够转化为:(val[x1]^val[x2]..val[xk])^(x[fa[x1]]^x[fa[x2]]..x[fa[xk]]),然后利用异或偶数次不变的原理推断必须是奇数次才有能够得到结果,推断是不是xn根就是了
#include <iostream> #include <cstdio> #include <cstring> #include <map> #include <algorithm> using namespace std; const int MAXN = 20010; int n, m; int val[MAXN], fa[MAXN]; int find(int x) { if (x != fa[x]) { int tmp = fa[x]; fa[x] = find(fa[x]); val[x] ^= val[tmp]; } return fa[x]; } int Union(int x, int y, int v) { int fx = find(x); int fy = find(y); if (fx == fy) return (val[x]^val[y]) == v; if (fx == n) swap(fx, fy); fa[fx] = fy; val[fx] = val[x]^v^val[y]; return 1; } int main() { char str[MAXN]; int p, q, v, k, x; int cas = 1; while (scanf("%d%d", &n, &m) != EOF && n+m) { for (int i = 0; i <= n; i++) { val[i] = 0; fa[i] = i; } printf("Case %d: ", cas++); int facts = 0; int err = 0; while (m--) { scanf("%s", str); if (str[0] == 'I') { gets(str); facts++; if (err) continue; int cnt = sscanf(str, "%d%d%d", &p, &q, &v); if (cnt == 2) { v = q; q = n; } if (!Union(p, q, v)) { err = true; printf("The first %d facts are conflicting. ", facts++); } } else { scanf("%d", &k); int ans = 0; int is = 1; map<int, int> mp; for (int i = 0; i < k; i++) { scanf("%d", &x); if (err) continue; int f = find(x); ans ^= val[x]; mp[f]++; } if (err) continue; map<int, int>::iterator it; for (it = mp.begin(); it != mp.end(); it++) { if (it->second % 2) { if (it->first != n) { is = 0; break; } else ans ^= val[it->first]; } } if (is) printf("%d ", ans); else printf("I don't know. "); } } printf(" "); } return 0; }