• Codeforces Round #FF 446 C. DZY Loves Fibonacci Numbers


    參考:http://www.cnblogs.com/chanme/p/3843859.html

    然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K的时候,它就用一个类似于树状数组段更的方法,用一个 d数组去存内容,譬如它要在区间 [3,6]上加一段fibonacci

    原来:

    id 0 1 2 3 4 5 6 7 8 9 10

    d  0 0 0 0 0 0 0 0 0 0 0

    更新:

    id 0 1 2 3 4 5 6  7  8  9 10

    d  0 0 0 1 0 0 0 -5  -3 0 0

    我们能够发现,当利用 d[i]=d[i]+d[i-1]+d[i-2] i由小到大更新后就会得到

    id 0 1 2 3 4 5 6  7  8  9 10

    d  0 0 0 1 1 2 3  0  0  0  0

    所以对于[L,R]上加一段操作,我们能够d[L]+=1; d[R+1]-=f[R-L+2],d[R+2]=f[R-L+1]; 

    所以假如我更新了m次,我每次更新的复杂度是O(1),我把全部数求出来一次的复杂度是O(n)

    然后他的算法是这种,j<K的时候更新的时候依照上述方法更新,询问的话则是将询问区间和更新的区间求交,把交的和加上去。

    当j==K的时候,利用d还原出新的a,把当前的区间清0.



    C. DZY Loves Fibonacci Numbers
    time limit per test
    4 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

    F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2).

    DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: a1, a2, ..., an. Moreover, there are mqueries, each query has one of the two types:

    1. Format of the query "l r". In reply to the query, you need to add Fi - l + 1 to each element ai, where l ≤ i ≤ r.
    2. Format of the query "l r". In reply to the query you should output the value of  modulo 1000000009 (109 + 9).

    Help DZY reply to all the queries.

    Input

    The first line of the input contains two integers n and m (1 ≤ n, m ≤ 300000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — initial array a.

    Then, m lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality 1 ≤ l ≤ r ≤ n holds.

    Output

    For each query of the second type, print the value of the sum on a single line.

    Sample test(s)
    input
    4 4
    1 2 3 4
    1 1 4
    2 1 4
    1 2 4
    2 1 3
    
    output
    17
    12
    
    Note

    After the first query, a = [2, 3, 5, 7].

    For the second query, sum = 2 + 3 + 5 + 7 = 17.

    After the third query, a = [2, 4, 6, 9].

    For the fourth query, sum = 2 + 4 + 6 = 12.



    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn=330000;
    const long long int mod=1000000009LL;
    typedef long long int LL;
    
    int n,m,k;
    LL a[maxn],sum[maxn],fib[maxn],gib[maxn];
    LL d[maxn]; int L[1100],R[1100];
    
    void init()
    {
        fib[1]=1LL,fib[2]=1LL;
        gib[1]=1LL,gib[2]=2LL;
        for(int i=3;i<=n+50;i++)
        {
            fib[i]=(fib[i-1]+fib[i-2])%mod;
            gib[i]=(gib[i-1]+fib[i])%mod;
        }
    }
    
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",a+i);
            sum[i]=sum[i-1]+a[i];
        }
        init();
        while(m--)
        {
            int c,l,r;
            scanf("%d%d%d",&c,&l,&r);
            if(c==1)
            {
                L[k]=l,R[k]=r; k++;
                d[l]=(d[l]+1LL)%mod;
                d[r+1]=(d[r+1]-fib[r-l+2]+mod)%mod;
                d[r+2]=(d[r+2]-fib[r-l+1]+mod)%mod;
                if(k>=1000)
                {
                    for(int i=1;i<=n;i++)
                    {
                        if(i>=2)
                            d[i]=((d[i]+d[i-1])%mod+d[i-2])%mod;
                        a[i]=(a[i]+d[i])%mod;
                        sum[i]=sum[i-1]+a[i];
                    }
                    memset(d,0,sizeof(d));  k=0;
                }
            }
            else if(c==2)
            {
                LL ret=0;
                for(int i=0;i<k;i++)
                {
                    int _left=max(l,L[i]);
                    int _right=min(r,R[i]);
                    if(_left>_right) continue;
                    int s=_left-L[i]+1,e=_right-L[i]+1;
                    ret=((ret+gib[e])%mod-gib[s-1]+mod)%mod;
                }
                ret=((ret+sum[r])%mod-sum[l-1]+mod)%mod;
                printf("%I64d
    ",(ret+mod)%mod);
            }
        }
        return 0;
    }
    



  • 相关阅读:
    JVM调优总结(八)-典型配置举例2
    JVM调优总结(七)-典型配置举例1
    ajax---异步请求对象的属性和方法
    ajax----发送异步请求的步骤
    ajax---获取XMLHttpReuquest 对象
    ajax--参数默认值问题
    ajax--参数映射方式实现阴影效果
    ajax-简单参数方法实现阴影效果
    ajax之阴影效果实现(对象函数方法)
    ajax对象方法的使用
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3939664.html
Copyright © 2020-2023  润新知