实现二叉树的插入,查找,删除,以及递归实现:
插入和查找很简单,把握一点,小的在树左,大的在树右,大树子树都遵循一样的规则,查找就更简单了:
主要看删除,删除有三种情况,看图:
在一下代码中详细有说明:
#pragma once template<class K,class V> struct SBTNode { K key; V value; SBTNode<K, V> *_left; SBTNode<K, V> *_right; SBTNode(const K& key, const V& value) :key(key) , value(value) , _left(nullptr) , _right(nullptr) {} }; template<class K, class V> class SBTree { typedef SBTNode<K, V> Node; public: SBTree() :_root(nullptr) {} ~SBTree() {} public: //非递归插入 bool Insert(const K& key,const V& value) { return _Insert(key,value); } bool _Insert(const K& key, const V& value) { if (_root == nullptr) { _root = new SBTNode<K, V>(key, value); return true; } SBTNode<K, V> *parent = nullptr; //指向cur 的前驱 SBTNode<K, V> *cur = _root; while (cur) { if (cur->key > key) //插左边 { parent = cur; cur = cur->_left; } else if (cur->key < key) { parent = cur; cur = cur->_right; } else { return false; } } if (parent->key < key) { SBTNode<K, V> *node = new SBTNode<K, V>(key, value); parent->_right = node; return true; } else if (parent->key > key) { SBTNode<K, V> *node = new SBTNode<K, V>(key, value); parent->_left = node; return true; } else { return false; } } //递归插入 bool Insert_R(const K& key, const V& value) { return _Insert_R(_root,key,value); } bool _Insert_R(Node* root, const K& key, const V& value) { if (root == nullptr) { root = new Node(key, value); return true; } if (root->key > key) { return _Insert_R(root->_left, key, value); } else if (root->key < key) { return _Insert_R(root->_right,key,value); } else { cout << key << "存在" << endl; return false; } } //非递归查找节点 SBTNode<K, V>* Find(const K& key) { if (_root == nullptr) { return nullptr; } SBTNode<K, V> *cur = _root; while (cur) { if (cur->key == key) { return cur; } else if (cur->key > key) { cur = cur->_left; } else if (cur->key < key) { cur = cur->_right; } else { return nullptr; } } return nullptr; } SBTNode<K, V>* Find_R(const K& key) { return _Find_R(_root,key); } //递归查找 Node* _Find_R(Node* root, const K& key) { if (root == nullptr) { return nullptr; } Node* cur = root; if (cur->key == key) { return cur; } else if (cur->key > key) { _Find_R(cur->_left,key); } else if (cur->key < key) { _Find_R(cur->_right,key); } else { return nullptr; } } //非递归删除节点 bool Remove(const K& key) { //1.root为空 if (_root == nullptr) { return false; } else if (_root->_left == nullptr && _root->_right == nullptr) { delete _root; _root = nullptr; return true; } Node* parent = nullptr; Node* del = _root; //1.查找要删的数 while (del) { if (del->key > key) { parent = del; del = del->_left; } else if (del->key < key) { parent = del; del = del->_right; } else { //2.是没有此数,或者找到此数 break; } } //3.处理被删节点 if (del) { //1.左树为空,右子树替换 if (del->_left == nullptr) { if (del == _root) { _root = del->_right; } else { if (del == parent->_left) parent->_right = del->_right; else parent->_left = del->_right; } } //2.右树为空,左子树替换 else if (del->_right == nullptr) { if (del == _root) { _root = del->_left; } else { if (del == parent->_left) parent->_left = del->_left; else parent->_right = del->_left; } } //3.左右子树都不为空的情况 else { Node* subRight = del->_right; Node* firstInder = del->_right; //找右边节点中序遍历的第一个节点 while (firstInder->_left) { parent = firstInder; firstInder = firstInder->_left; } //交换 swap(firstInder->key,del->key); swap(firstInder->value,del->value); if (firstInder = parent->_left) parent->_left = firstInder->_right; else parent->_right = firstInder->_right; del = firstInder; } delete del; } else { cout << "没有这个数" << endl; return false; } } //递归删除节点 bool Remove_R(const K& key) { return _Remove_R(_root,key); } bool _Remove_R(Node*& root, const K& key) { if (root == nullptr) return false; if (root->key > key) { return _Remove_R(root->_left,key); } else if (root->key < key) { return _Remove_R(root->_right,key); } else { Node* del = root; if (root->_left == nullptr) { root = root->_right; delete del; } else if (root->_right == nullptr) { root = root->_left; delete del; } else { Node* firstInder = root->_right; while (firstInder->_left) { firstInder = firstInder->_left; } swap(del->key,firstInder->key); swap(del->value, firstInder->value); _Remove_R(firstInder,key); } } } //中序遍历 void InOrder(SBTNode<K, V>* root) { if (root == nullptr) { return; //递归结束出口 } SBTNode<K, V> *cur = root; InOrder(cur->_left); cout << cur->key << " "; InOrder(cur->_right); } public: SBTNode<K, V> *_root; }; void Test() { int a[] = {5,3,4,1,7,8,2,6,0,9}; SBTree<int, int> s1; for (int i = 0; i < sizeof(a)/sizeof(int); ++i) { s1.Insert(a[i],a[i]); } s1.InOrder(s1._root); cout << endl; cout << s1.Find(9)->key << endl; cout << s1.Find_R(0)->key<< endl; s1.Remove(5); s1.Remove_R(9); s1.InOrder(s1._root); }代码测试通过,赐教!