题意:给n个数,从中选出k个数,求选出的k个数的乘积结尾的0最多是多少
思路:类似于背包的递推,dp[i][j][k]表示前i个数选j个数含有k个5的方案下2的最大数,第一维用滚动数组优化,由于5^26>1e18,所以第二维开200*26即可 递推式为
dp[i+1][j+1][k+count5[i+1]] = max( dp[ i ] [ j ] [ k ] + count2[ i+1 ], dp[ i+1 ] [ j+1 ] [ k + count5[ i+1 ] ] );
dp[ i+1 ] [ j ] [ k ] = max( dp[ i ] [ j ] [ k ], dp[ i+1 ] [ j ] [ k ] );
dp初始化为-inf,dp[0][0][0]初始化为0
AC代码:
#include "iostream" #include "iomanip" #include "string.h" #include "stack" #include "queue" #include "string" #include "vector" #include "set" #include "map" #include "algorithm" #include "stdio.h" #include "math.h" #pragma comment(linker, "/STACK:102400000,102400000") #define bug(x) cout<<x<<" "<<"UUUUU"<<endl; #define mem(a,x) memset(a,x,sizeof(a)) #define step(x) fixed<< setprecision(x)<< #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define ll long long #define endl (" ") #define ft first #define sd second #define lrt (rt<<1) #define rrt (rt<<1|1) using namespace std; const long long INF = 1e18+1LL; const int inf = 1e9+1e8; const int N=1e5+100; const ll mod=1e9+7; ///dp[i][j][k]表示前i个数选j个数含有k个5的方案下2的最大数 ll a[205],b[205],c[205],n,k,dp[3][205][205*26]; int main(){ ios::sync_with_stdio(0),cin.tie(0),cout.tie(0); cin>>n>>k; for(int i=1; i<=n; ++i){ cin>>a[i]; for(ll x=a[i]; x%2==0; x/=2,b[i]++); for(ll x=a[i]; x%5==0; x/=5,c[i]++); } mem(dp,-127); dp[0][0][0]=0; int cur=0; for(int i=0; i<n; ++i){ for(int j=0; j<=k; ++j){ for(int t=0; t<=200*26; ++t){ dp[cur^1][j+1][t+c[i+1]]=max(dp[cur^1][j+1][t+c[i+1]],dp[cur][j][t]+b[i+1]); dp[cur^1][j][t]=max(dp[cur^1][j][t],dp[cur][j][t]); } } cur^=1; } ll ans=0; for(ll i=1; i<=200*26; ++i) ans=max(ans,min(i,dp[cur][k][i])); cout<<ans; return 0; }