--------------------------
线段树,类似区间树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(logn)。
线段树的每个节点表示一个区间,子节点则分别表示父节点的左右半区间,例如父亲的区间是[a,b],那么(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b]。
下面我们从一个经典的例子来了解线段树,问题描述如下:从数组arr[0...n-1]中查找某个数组某个区间内的最小值,其中数组大小固定,但是数组中的元素的值可以随时更新。
对这个问题一个简单的解法是:遍历数组区间找到最小值,时间复杂度是O(n),额外的空间复杂度O(1)。当数据量特别大,而查询操作很频繁的时候,耗时可能会不满足需求。
另一种解法:使用一个二维数组来保存提前计算好的区间[i,j]内的最小值,那么预处理时间为O(n^2),查询耗时O(1), 但是需要额外的O(n^2)空间,当数据量很大时,这个空间消耗是庞大的,而且当改变了数组中的某一个值时,更新二维数组中的最小值也很麻烦。
我们可以用线段树来解决这个问题:预处理耗时O(n),查询、更新操作O(logn),需要额外的空间O(n)。根据这个问题我们构造如下的二叉树
- 叶子节点是原始组数arr中的元素
- 非叶子节点代表它的所有子孙叶子节点所在区间的最小值
例如对于数组[2, 5, 1, 4, 9, 3]可以构造如下的二叉树(背景为白色表示叶子节点,非叶子节点的值是其对应数组区间内的最小值,例如根节点表示数组区间arr[0...5]内的最小值是1): 本文地址
由于线段树的父节点区间是平均分割到左右子树,因此线段树是完全二叉树,对于包含n个叶子节点的完全二叉树,它一定有n-1个非叶节点,总共2n-1个节点,因此存储线段是需要的空间复杂度是O(n)。那么线段树的操作:创建线段树、查询、节点更新 是如何运作的呢(以下所有代码都是针对求区间最小值问题)?
对于线段树我们可以选择和普通二叉树一样的链式结构。由于线段树是完全二叉树,我们也可以用数组来存储,下面的讨论及代码都是数组来存储线段树,节点结构如下(注意到用数组存储时,有效空间为2n-1,实际空间确不止这么多,比如上面的线段树中叶子节点1、3虽然没有左右子树,但是的确占用了数组空间,实际空间是满二叉树的节点数目: , 是树的高度,但是这个空间复杂度也是O(n)的 )。
struct SegTreeNode
{
int val;
};
定义包含n个节点的线段树 SegTreeNode segTree[n],segTree[0]表示根节点。那么对于节点segTree[i],它的左孩子是segTree[2*i+1],右孩子是segTree[2*i+2]。
我们可以从根节点开始,平分区间,递归的创建线段树,线段树的创建函数如下:
1 const int MAXNUM = 1000;
2 struct SegTreeNode
3 {
4 int val;
5 }segTree[MAXNUM];//定义线段树
6
7 /*
8 功能:构建线段树
9 root:当前线段树的根节点下标
10 arr: 用来构造线段树的数组
11 istart:数组的起始位置
12 iend:数组的结束位置
13 */
14 void build(int root, int arr[], int istart, int iend)
15 {
16 if(istart == iend)//叶子节点
17 segTree[root].val = arr[istart];
18 else
19 {
20 int mid = (istart + iend) / 2;
21 build(root*2+1, arr, istart, mid);//递归构造左子树
22 build(root*2+2, arr, mid+1, iend);//递归构造右子树
23 //根据左右子树根节点的值,更新当前根节点的值
24 segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
25 }
26 }
已经构建好了线段树,那么怎样在它上面超找某个区间的最小值呢?查询的思想是选出一些区间,使他们相连后恰好涵盖整个查询区间,因此线段树适合解决“相邻的区间的信息可以被合并成两个区间的并区间的信息”的问题。代码如下,具体见代码解释
1 /*
2 功能:线段树的区间查询
3 root:当前线段树的根节点下标
4 [nstart, nend]: 当前节点所表示的区间
5 [qstart, qend]: 此次查询的区间
6 */
7 int query(int root, int nstart, int nend, int qstart, int qend)
8 {
9 //查询区间和当前节点区间没有交集
10 if(qstart > nend || qend < nstart)
11 return INFINITE;
12 //当前节点区间包含在查询区间内
13 if(qstart <= nstart && qend >= nend)
14 return segTree[root].val;
15 //分别从左右子树查询,返回两者查询结果的较小值
16 int mid = (nstart + nend) / 2;
17 return min(query(root*2+1, nstart, mid, qstart, qend),
18 query(root*2+2, mid + 1, nend, qstart, qend));
19
20 }
举例说明(对照上面的二叉树):
1、当我们要查询区间[0,2]的最小值时,从根节点开始,要分别查询左右子树,查询左子树时节点区间[0,2]包含在查询区间[0,2]内,返回当前节点的值1,查询右子树时,节点区间[3,5]和查询区间[0,2]没有交集,返回正无穷INFINITE,查询结果取两子树查询结果的较小值1,因此结果是1.
2、查询区间[0,3]时,从根节点开始,查询左子树的节点区间[0,2]包含在区间[0,3]内,返回当前节点的值1;查询右子树时,继续递归查询右子树的左右子树,查询到非叶节点4时,又要继续递归查询:叶子节点4的节点区间[3,3]包含在查询区间[0,3]内,返回4,叶子节点9的节点区间[4,4]和[0,3]没有交集,返回INFINITE,因此非叶节点4返回的是min(4, INFINITE) = 4,叶子节点3的节点区间[5,5]和[0,3]没有交集,返回INFINITE,因此非叶节点3返回min(4, INFINITE) = 4, 因此根节点返回 min(1,4) = 1。
单节点更新是指只更新线段树的某个叶子节点的值,但是更新叶子节点会对其父节点的值产生影响,因此更新子节点后,要回溯更新其父节点的值。
1 /*
2 功能:更新线段树中某个叶子节点的值
3 root:当前线段树的根节点下标
4 [nstart, nend]: 当前节点所表示的区间
5 index: 待更新节点在原始数组arr中的下标
6 addVal: 更新的值(原来的值加上addVal)
7 */
8 void updateOne(int root, int nstart, int nend, int index, int addVal)
9 {
10 if(nstart == nend)
11 {
12 if(index == nstart)//找到了相应的节点,更新之
13 segTree[root].val += addVal;
14 return;
15 }
16 int mid = (nstart + nend) / 2;
17 if(index <= mid)//在左子树中更新
18 updateOne(root*2+1, nstart, mid, index, addVal);
19 else updateOne(root*2+2, mid+1, nend, index, addVal);//在右子树中更新
20 //根据左右子树的值回溯更新当前节点的值
21 segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
22 }
比如我们要更新叶子节点4(addVal = 6),更新后值变为10,那么其父节点的值从4变为9,非叶结点3的值更新后不变,根节点更新后也不变。
区间更新是指更新某个区间内的叶子节点的值,因为涉及到的叶子节点不止一个,而叶子节点会影响其相应的非叶父节点,那么回溯需要更新的非叶子节点也会有很多,如果一次性更新完,操作的时间复杂度肯定不是O(lgn),例如当我们要更新区间[0,3]内的叶子节点时,需要更新出了叶子节点3,9外的所有其他节点。为此引入了线段树中的延迟标记概念,这也是线段树的精华所在。
延迟标记:每个节点新增加一个标记,记录这个节点是否进行了某种修改(这种修改操作会影响其子节点),对于任意区间的修改,我们先按照区间查询的方式将其划分成线段树中的节点,然后修改这些节点的信息,并给这些节点标记上代表这种修改操作的标记。在修改和查询的时候,如果我们到了一个节点p,并且决定考虑其子节点,那么我们就要看节点p是否被标记,如果有,就要按照标记修改其子节点的信息,并且给子节点都标上相同的标记,同时消掉节点p的标记。
因此需要在线段树结构中加入延迟标记域,本文例子中我们加入标记与addMark,表示节点的子孙节点在原来的值的基础上加上addMark的值,同时还需要修改创建函数build 和 查询函数 query,修改的代码用红色字体表示,其中区间更新的函数为update,代码如下:
1 const int INFINITE = INT_MAX;
2 const int MAXNUM = 1000;
3 struct SegTreeNode
4 {
5 int val;
6 int addMark;//延迟标记
7 }segTree[MAXNUM];//定义线段树
8
9 /*
10 功能:构建线段树
11 root:当前线段树的根节点下标
12 arr: 用来构造线段树的数组
13 istart:数组的起始位置
14 iend:数组的结束位置
15 */
16 void build(int root, int arr[], int istart, int iend)
17 {
18 segTree[root].addMark = 0;//----设置标延迟记域
19 if(istart == iend)//叶子节点
20 segTree[root].val = arr[istart];
21 else
22 {
23 int mid = (istart + iend) / 2;
24 build(root*2+1, arr, istart, mid);//递归构造左子树
25 build(root*2+2, arr, mid+1, iend);//递归构造右子树
26 //根据左右子树根节点的值,更新当前根节点的值
27 segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
28 }
29 }
30
31 /*
32 功能:当前节点的标志域向孩子节点传递
33 root: 当前线段树的根节点下标
34 */
35 void pushDown(int root)
36 {
37 if(segTree[root].addMark != 0)
38 {
39 //设置左右孩子节点的标志域,因为孩子节点可能被多次延迟标记又没有向下传递
40 //所以是 “+=”
41 segTree[root*2+1].addMark += segTree[root].addMark;
42 segTree[root*2+2].addMark += segTree[root].addMark;
43 //根据标志域设置孩子节点的值。因为我们是求区间最小值,因此当区间内每个元
44 //素加上一个值时,区间的最小值也加上这个值
45 segTree[root*2+1].val += segTree[root].addMark;
46 segTree[root*2+2].val += segTree[root].addMark;
47 //传递后,当前节点标记域清空
48 segTree[root].addMark = 0;
49 }
50 }
51
52 /*
53 功能:线段树的区间查询
54 root:当前线段树的根节点下标
55 [nstart, nend]: 当前节点所表示的区间
56 [qstart, qend]: 此次查询的区间
57 */
58 int query(int root, int nstart, int nend, int qstart, int qend)
59 {
60 //查询区间和当前节点区间没有交集
61 if(qstart > nend || qend < nstart)
62 return INFINITE;
63 //当前节点区间包含在查询区间内
64 if(qstart <= nstart && qend >= nend)
65 return segTree[root].val;
66 //分别从左右子树查询,返回两者查询结果的较小值
67 pushDown(root); //----延迟标志域向下传递
68 int mid = (nstart + nend) / 2;
69 return min(query(root*2+1, nstart, mid, qstart, qend),
70 query(root*2+2, mid + 1, nend, qstart, qend));
71
72 }
73
74 /*
75 功能:更新线段树中某个区间内叶子节点的值
76 root:当前线段树的根节点下标
77 [nstart, nend]: 当前节点所表示的区间
78 [ustart, uend]: 待更新的区间
79 addVal: 更新的值(原来的值加上addVal)
80 */
81 void update(int root, int nstart, int nend, int ustart, int uend, int addVal)
82 {
83 //更新区间和当前节点区间没有交集
84 if(ustart > nend || uend < nstart)