众所周知,由于python(Cpython)的全局锁(GIL)问题存在,导致Thread也就是线程的并行并不可实现。 multiprocessing 模块采用多进程而不是多线程的方式实现并行,解决了GIL的问题,一定程度上使状况得到了缓解。
然而,Multiprocess本身依然有一些功能上的瓶颈。其中一个重要的是:进程之间不能共享内存(线程间则可以共享内存)。这意味着在进程间交换数据的时候,需要把数据打包、传递,解包。在python的语境下就是:
"pickle from main process to the subprocess;
depickle from subprocess to an object in memory;
pickle and return to the main process;
depickle from main process and return to memory"
(具体详见这个问题下的吐槽)
因此, 在需要在进程间共享巨大的数据包的时候,多进程的表现还不如单进程。
除此之外,当需要运行的程序本身不是计算密集型而是是IO密集型,多进程所增加的读写会抵消掉运算速度的增益;如果程序复杂度根本不需要用并行来解决,那么建立进程(池)的时间很可能比运行程序本身还要慢;另外,在进程池 multiprocessing.Pool(n) 的 n 的选择上,如果选择了多于当前CPU的核心数目的数字( multiprocessing.cpu_count() ),那么在进程之间切换的功夫会大大拉低效率。
建立对线程和进程关系的直观印象,可参考这篇文章。
快速而完整地了解python的全局锁(GIL)问题,参考这篇不错的博客。
为了解 multiprocess 的使用,我做了一些测试,测试环境是4核的Macbook Air。如下:
from multiprocessing import Process, Manager, Pool
1 def f(l): 2 l.reverse() 3 return 4 5 def main(): 6 l1 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 7 l2 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 8 l3 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 9 l4 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 10 l5 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 11 l6 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 12 l7 = [random.randrange(0, 100000, 1) for i in range(0, 100000)] 13 s = time.time() 14 for l in [l1, l2, l3, l4, l5, l6, l7]: 15 f(l) 16 print "%s seconds" % (time.time() - s) 17 s = time.time() 18 map(f, [l1, l2, l3, l4, l5, l6, l7]) 19 print "%s seconds" % (time.time() - s) 20 p = Pool(4) 21 s = time.time() 22 p.map(f, [l1, l2, l3, l4, l5, l6, l7]) 23 print "%s seconds" % (time.time() - s) 24 return
也就是分别测试 f() 对 l1, l2, l3, l4, l5, l6, l7 7个列表的操作时间。先是循环的依次操作,再是python中非常好用的 map() 函数,最后是 multiprocessing 的进程池 multiprocessing.Pool.map() ——进程池中建立了4个 worker process , 也就是说,接下来的任务会被随机地分配给4个进程来完成。
每次操作之前都重新计时,得到了这样的结果:
>>> main() 0.00250101089478 seconds 0.000663995742798 seconds 0.907639980316 seconds
多进程出奇得慢。而 map() 相对于循环操作有很大的效率提升。
所以并不是所有任务都适合多进程(至于列表的倒置为什么不适合多进程,我并不明白。。)。在最近的实验中,我需要找到提升效率的方法,以后的测试会陆续放上来。
实验的时候,本来用 Pool(n) ,但是始终卡在了 racquire() 这里(ctrl-c终止后停在的地方),于是改用 Process() ,就可以运行了。但是运行到中间的某一行后,本来设定的4个进程变成了只有1个进程在运行,原因是内存超了。。
另外还有一个让人头疼的问题。在用 Process()的时候,如果有一个进程灭了,那么你不会收到任何提示 —— 没错,就是悄无声息地没了。。