一:B-树是一种平衡的多路查找树,它在文件系统中很有用。
定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:
⑴树中每个结点至多有m 棵子树。
⑵若根结点不是叶子结点,则至少有两棵子树。
⑶除根结点之外的所有非叶结点至少有[m/2] 棵子树;
⑷所有的非终端结点中包含以下信息数据:(n,A0,K1,A1,K2,…,Kn,An)
其中:n 为关键码的个数,Ki(i=1,2,…,n)为关键码且Ki<Ki+1,Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-1 所指子树中所有结点的关键码均小于Ki大于Ki-1。
⑸所有的叶子结点都出现在同一层次上,并且不带信息(实际上这些结点不存在,指向这些结点的指针为空)。即所有叶节点具有相同的深度,等于树高度。
如一棵四阶B-树,其深度为4,如下图:
B-树的查找类似二叉排序树的查找,所不同的是B-树每个结点上是多关键码的有序表,在到达某个结点时,先在有序表中查找,若找到,则查找成功;否则,到按照对应的指针信息指向的子树中去查找,当到达叶子结点时,则说明树中没有对应的关键码。
在上图的B-树上查找关键字47的过程如下:
1)首先从更开始,根据根节点指针找到 *a节点,因为 *a 节点中只有一个关键字,且给定值47 > 关键字35,则若存在必在指针A1所指的子树内。
2)顺指针找到 *c节点,该节点有两个关键字(43和 78),而43 < 47 < 78,若存在比在指针A1所指的子树中。
3)同样,顺指针找到 *g节点,在该节点找到关键字47,查找成功。
二:B+树是应文件系统所需而产生的一种B-树的变形树。
一棵m阶的B+树和m阶的B-树的差异在于:
⑴有n 棵子树的结点中含有n 个关键码;
⑵所有的叶子结点中包含了全部关键码的信息,及指向含有这些关键码记录的指针,且叶子结点本身依关键码的大小自小而大组成顺序链表。
⑶在B+树上进行随机查找、插入和删除的过程基本上与B-树类似。只是在查找时,若非叶结点上的关键码等于给定值,也并不终止,而是继续向下直到叶子结点。因此,在B+树中,不管查找成功与否,每次查找都是走了一条从根节点到叶子结点的路径。
如图一棵3阶的B+树:通常在B+树上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点。因此可以对B+树进行两种查找运算:一种是从最小关键字起顺序查找,另一种是从根节点开始,进行随机查找。
三:下面来介绍B+树在数据库索引中的典型应用。
数据库索引常用B+树来实现。数据库索引分为聚集索引(也叫聚簇索引)和非聚集索引(非聚簇索引)两种类型。
InnoDB引擎使用的是聚集索引。所谓聚集索引:就是B+树的叶子节点的data域中存放的是完整的数据记录。
对于聚集索引,按照B+树中关键字的不同分为主键索引和辅助索引。使用主键属性作为B+树的关键字就是主键索引,使用非主键属性作为B+树的关键字就是辅助索引。如下图:
上图是InnoDB主键索引
上图是InnoDB辅助索引
聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。从上面的数据结构也可以理解,用来做索引的属性列的字段越短性能越好。
MyISAM引擎使用的是非聚集索引。所谓非聚集索引:就是B+树的叶子节点的data域中存放的是数据记录的地址。按照B+树中关键字的不同也可以分为主键索引和辅助索引。如图所示:
上图是MyISAM主键索引
上图是MyISAM辅助索引
InnoDB索引和MyISAM索引的区别:
1) InnoDB是聚集索引,B+树的叶子节点的data域中保存的是完整的数据记录。MyISAM是非聚集索引,B+树的叶子节点的data域中保存的是数据记录的地址。
2) InnoDB的辅助索引中,B+树的叶子节点的data域中保存的是对应的主键,因此在InnoDB中使用辅助索引需要两边检索。而对于MyISAM索引,无论是主键索引还是辅助索引对需要一次检索即可。
3) 对于聚集索引,因为它的主键索引的data域中存储的是完整的行信息,因此不会再单独存储行信息,这也是它的辅助索引的data域中存储的是主键值的原因。对于非聚集索引,它的主键索引和辅助索引的data域中存储的都是行信息的地址,因此需要单独的空间来存储行信息。如下图:
B-Tree索引适用于全键值,键值或前缀查找。其中键前缀查找只适用于根据最前缀的查找。前面所述的索引对如下类型的查询有效:
1. 全值匹配:全值匹配指的是和索引中的所有列进行匹配。
2. 匹配最左前缀:即仅仅匹配索引的最左侧列。
3. 匹配最左前缀的一部分:即仅仅匹配索引的最左侧列的一部分。
4. 匹配范围值:指定索引的最左侧列的范围。
5. 精确匹配前几列并范围匹配后一列
将上面的叙述总结起来,可以归纳出B-Tree索引的限制:
1. 如果不是按照索引的最左列开始查找,则无法使用索引。
2. 查询时不能跳过索引中的列。
3. 如果查询中有某个列的范围查询,则其右边所有的列都无法使用索引优化查找。
读者应该明白,索引列的顺序是很重要的,在性能优化的时候,可以建立相同的列但顺序不同的索引来满足不同的需求。