• 灰色预测--matlab&python实现


    function SGrey
    
    X0 = input('请输入原始负荷数据:');   %输入原始数据
    n = length(X0);  %原始n年数据
    
    %累加生成
    X1 = zeros(1,n);
    for i = 1:n
        if i == 1
            X1(1,i) = X0(1,i);
        else
            X1(1,i) = X0(1,i) + X1(1,i-1);
        end
    end
    X1
    
    %计算数据矩阵B和数据向量Y
    B = zeros(n-1,2);
    Y = zeros(n-1,1);
    for i = 1:n-1
        B(i,1) = -0.5*(X1(1,i) + X1(1,i+1));
        B(i,2) = 1;
        Y(i,1) = X0(1,i+1);
    end
    B,Y
    
    %计算GM(1,1)微分方程的参数a和u
    A = zeros(2,1);
    A = inv(B'*B)*B'*Y;
    a = A(1,1);
    u = A(2,1);
    a,u
    
    %建立灰色预测模型
    XX0(1,1) = X0(1,1);
    for i = 2:n
        XX0(1,i) = (X0(1,1) - u/a)*(1-exp(a))*exp(-a*(i-1));
    end
    XX0
    %模型精度的后验差检验
    e = 0;          %求残差平均值
    for i =1:n
        e = e + (X0(1,i) - XX0(1,i));
    end
    e = e/n;
    e
    aver = 0;     %求历史数据平均值
    for i = 1:n
        aver = aver + X0(1,i);
    end
    aver = aver / n;
    aver
    s12 = 0;     %求历史数据方差
    for i = 1:n
        s12 = s12 + (X0(1,i)-aver)^2;
    end
    s12 = s12 / n;
    s12
    s22 = 0;       %求残差方差
    for i = 1:n
        s22 = s22 + ((X0(1,i) - XX0(1,i)) - e)^2;
    end
    s22 = s22 / n;
    s22
    C = s22 / s12;    %求后验差比值
    C
    cout = 0;    %求小误差概率
    for i = 1:n
        if abs((X0(1,i) - XX0(1,i)) - e) < 0.6754*sqrt(s12)
            cout = cout+1;
        else
            cout = cout;
        end
    end
    P = cout / n;
    P
    if (C < 0.35 & P > 0.95)
        disp('预测精度为一级');
        m = input('请输入需要预测的年数: m = ');   %预测往后各年的负荷
        disp('往后m各年负荷为:');
        f = zeros(1,m);
        for i = 1:m
            f(1,i) = (X0(1,1) - u/a)*(1-exp(a))*exp(-a*(i+n-1));
        end
        f
    else
        disp('灰色预测法不适用');
    end

    matlab输出

    输入:[724.57 746.62 778.27 800.8 827.75 871.1 912.37 954.28 995.01 1037.2]
    
    输出:
    
    >> SGrey
    请输入原始负荷数据:[724.57 746.62 778.27 800.8 827.75 871.1 912.37 954.28 995.01 1037.2
    ]
    
    X1 =
    
      1.0e+003 *
    
      Columns 1 through 8
    
        0.7246    1.4712    2.2495    3.0503    3.8780    4.7491    5.6615    6.6158
    
      Columns 9 through 10
    
        7.6108    8.6480
    
    
    B =
    
      1.0e+003 *
    
       -1.0979    0.0010
       -1.8603    0.0010
       -2.6499    0.0010
       -3.4641    0.0010
       -4.3136    0.0010
       -5.2053    0.0010
       -6.1386    0.0010
       -7.1133    0.0010
       -8.1294    0.0010
    
    
    Y =
    
      1.0e+003 *
    
        0.7466
        0.7783
        0.8008
        0.8277
        0.8711
        0.9124
        0.9543
        0.9950
        1.0372
    
    
    a =
    
       -0.0420
    
    
    u =
    
      693.9403
    
    
    XX0 =
    
      1.0e+003 *
    
      Columns 1 through 8
    
        0.7246    0.7398    0.7715    0.8046    0.8391    0.8750    0.9125    0.9517
    
      Columns 9 through 10
    
        0.9925    1.0350
    
    
    e =
    
        0.1818
    
    
    aver =
    
      864.7970
    
    
    s12 =
    
      1.0357e+004
    
    
    s22 =
    
       26.8113
    
    
    C =
    
        0.0026
    
    
    P =
    
         1
    
    预测精度为一级
    请输入需要预测的年数: m = 10
    往后m各年负荷为:
    
    f =
    
      1.0e+003 *
    
      Columns 1 through 8
    
        1.0794    1.1257    1.1739    1.2242    1.2767    1.3315    1.3885    1.4481
    
      Columns 9 through 10
    
        1.5101    1.5749

    Python实现

    # -*- coding: utf-8 -*-
    """
    Spyder Editor
    
    This is a temporary script file.
    """
    import numpy as np
    import math
    
    history_data = [724.57,746.62,778.27,800.8,827.75,871.1,912.37,954.28,995.01,1037.2]
    n = len(history_data)
    X0 = np.array(history_data)
    
    #累加生成
    history_data_agg = [sum(history_data[0:i+1]) for i in range(n)]
    X1 = np.array(history_data_agg)
    
    #计算数据矩阵B和数据向量Y
    B = np.zeros([n-1,2])
    Y = np.zeros([n-1,1])
    for i in range(0,n-1):
        B[i][0] = -0.5*(X1[i] + X1[i+1])
        B[i][1] = 1
        Y[i][0] = X0[i+1]
    
    #计算GM(1,1)微分方程的参数a和u
    #A = np.zeros([2,1])
    A = np.linalg.inv(B.T.dot(B)).dot(B.T).dot(Y)
    a = A[0][0]
    u = A[1][0]
    
    #建立灰色预测模型
    XX0 = np.zeros(n)
    XX0[0] = X0[0]
    for i in range(1,n):
        XX0[i] = (X0[0] - u/a)*(1-math.exp(a))*math.exp(-a*(i));
    
    
    #模型精度的后验差检验
    e = 0      #求残差平均值
    for i in range(0,n):
        e += (X0[i] - XX0[i])
    e /= n
    
    #求历史数据平均值
    aver = 0;     
    for i in range(0,n):
        aver += X0[i]
    aver /= n
    
    #求历史数据方差
    s12 = 0;     
    for i in range(0,n):
        s12 += (X0[i]-aver)**2;
    s12 /= n
    
    #求残差方差
    s22 = 0;       
    for i in range(0,n):
        s22 += ((X0[i] - XX0[i]) - e)**2;
    s22 /= n
    
    #求后验差比值
    C = s22 / s12   
    
    #求小误差概率
    cout = 0
    for i in range(0,n):
        if abs((X0[i] - XX0[i]) - e) < 0.6754*math.sqrt(s12):
            cout = cout+1
        else:
            cout = cout
    P = cout / n
    
    if (C < 0.35 and P > 0.95):
        #预测精度为一级
        m = 10   #请输入需要预测的年数
        #print('往后m各年负荷为:')
        f = np.zeros(m)
        for i in range(0,m):
            f[i] = (X0[0] - u/a)*(1-math.exp(a))*math.exp(-a*(i+n))    
    else:
        print('灰色预测法不适用')
  • 相关阅读:
    confluent-kafka python Producer Consumer实现
    kafka producer.poll producer.flush consumer.poll的区别
    kafka Java创建生产者报错:Invalid partition given with record: 1 is not in the range [0...1)
    Kafka通讯的Java实例
    虚机克隆搭建kafka服务器集群
    kafka报错解决:Broker may not be avaliable
    Kafka+Zookeeper+confluent-kafka搭建
    Kafka学习笔记
    【SpringCloud】 第十篇: 高可用的服务注册中心
    【SpringCloud】 第九篇: 服务链路追踪(Spring Cloud Sleuth)
  • 原文地址:https://www.cnblogs.com/manhua/p/5510105.html
Copyright © 2020-2023  润新知