• Codeforces 992 E. Nastya and King-Shamans


    (>Codeforcesspace992 E. Nastya and King-Shamans<)

    题目大意 : 给你一个长度为 (n) 的序列,有 (q) 次操作,每一次操作将一个数 (A_i) 改为另外一个数。每一次操作结束时,你需要找出一个位置 (x) 满足 (A_x = sum_{x-1}) 其中 (sum) 表示前缀和

    $n , q leq 2 imes 10^5 0 leq A_i leq 10^9 $

    解题思路 :

    博主亲测分块加均摊分析的做法会因为常数太大 (TLE) 掉,在此就不多讨论了

    问题要求出满足 (A_x = sum_{x-1}) 的位置,这个可以转化为 (sum_x = 2 imes sum_{x-1})

    我们考虑从 (A_{p=1}) 开始跳,每一次跳到其后面一个最小的 (k - 1) ,满足(sum_k geq 2 imes sum_p)

    可以证明如果有答案且 (sum_{ans} > 0),那么答案一定在所有的 (k) 之中产生

    不妨用反证法来证明,假设当且跳到点 (k) ,接下来选取的点是 (k' (k < k')) ,对于 (k < i < k' - 1)

    如果说 (i) 是答案的话,设 (y) 为 第一个满足 $ sum_y geq 2 imes sum_i$ 的点。

    因为(sum_y geq sumk) 所以必然有 $ y geq k' $ ,如果 (i < k' - 1) 那么 $ y - i > 1$ , (i) 不是答案

    所以证明了这样跳,如果有答案的话答案必然在跳到的点上

    所以可以用树状数组维护前缀和,每一次暴力二分跳,跳 (log) 次就能跳完,总复杂度是(O(nlog^3n))


    /*program by mangoyang*/
    #include<bits/stdc++.h>
    #define inf (0x7f7f7f7f)
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    typedef long long ll;
    using namespace std;
    template <class T>
    inline void read(T &x){
        int f = 0, ch = 0; x = 0;
        for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
        for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        if(f) x = -x;
    }
    #define N (300005)
    #define int ll
    ll c[N], a[N], n, q;
    inline void add(int x, ll y){ for(int i = x; i <= n; i += i & -i) c[i] += y; }
    inline ll sum(int x){ ll ans = 0; for(int i = x; i; i -= i & -i) ans += c[i]; return ans; }
    inline void solve(){
    	int x = 1;
    	if(sum(1) == 0) return (void)( puts("1") );
    	while(x < n){
    		int l = x + 1, r = n, k = x, now = 2 * sum(x);
    		if(sum(x + 1) == now) return (void) (printf("%d
    ", x + 1));
    		while(l <= r){
    			int mid = l + r >> 1;
    			if(sum(mid) < now) k = mid, l = mid + 1; else r = mid - 1;
    		}
    		if(k + 1 > n) break;
    		x = (k == x) ? k + 1 : k;
    	}
    	puts("-1");
    }
    main(){
    	read(n), read(q);
    	for(int i = 1; i <= n; i++) read(a[i]), add(i, a[i]);
    	for(int i = 1; i <= q; i++){
    		int x, y; read(x), read(y);
    		add(x, y - a[x]), a[x] = y, solve();
    	}
    	return 0;
    }
    
  • 相关阅读:
    DataSource
    Quality in the Test Automation Review Process and Design Review Template
    测试的面临的挑战
    【CSP-S2019模拟】11.11比赛总结
    【CSP-S2019模拟】【Comet OJ 模拟赛Day2T3】11.10比赛总结
    【CSP-S2019模拟】11.08比赛总结
    【Codeforces#599】简要题解
    【简单计数知识2】JZOJ6405. 【NOIP2019模拟11.04】c
    反演学习小计
    【CSP-S2019模拟】11.06比赛总结
  • 原文地址:https://www.cnblogs.com/mangoyang/p/9300930.html
Copyright © 2020-2023  润新知