• POJ 3356 AGTC


    AGTC
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8101   Accepted: 3212

    Description

    Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

    • Deletion: a letter in x is missing in y at a corresponding position.
    • Insertion: a letter in y is missing in x at a corresponding position.
    • Change: letters at corresponding positions are distinct

    Certainly, we would like to minimize the number of all possible operations.

    Illustration
    A G T A A G T * A G G C
    
    | | | | | | |
    A G T * C * T G A C G C
    Deletion: * in the bottom line
    Insertion: * in the top line
    Change: when the letters at the top and bottom are distinct

    This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

    A  G  T  A  A  G  T  A  G  G  C
    
    | | | | | | |
    A G T C T G * A C G C

    and 4 moves would be required (3 changes and 1 deletion).

    In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.

    Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

    Write a program that would minimize the number of possible operations to transform any string x into a string y.

    Input

    The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

    Output

    An integer representing the minimum number of possible operations to transform any string x into a string y.

    Sample Input

    10 AGTCTGACGC
    11 AGTAAGTAGGC

    Sample Output

    4
    题目大意:给定两个字符串,两个字符串的字母可以进行插入,删除,或者替换操作,问最少进行多少次操作可以使两个字符串相等。
    解题方法:类似于最长公共子序列,有两种方法可以解答。第一种直接求两个字符串的最长公共子序列,然后用较长字符串的长度减去最长公共子序列的长度,第二种方法是直接求最少需要的操作。
    方法一:
    #include <stdio.h>
    #include <iostream>
    #include <string.h>
    using namespace std;
    
    int dp[1005][1005];
    
    
    int main()
    {
        char str1[1005];
        char str2[1005];
        int n1, n2;
        int MaxLen;
        while(cin>>n1>>str1>>n2>>str2)
        {
            memset(dp, 0, sizeof(dp));
            MaxLen = n1 > n2 ? n1 : n2;
            for (int i = 1; i <= n1; i++)
            {
                for (int j = 1; j <= n2; j++)
                {
                    if (str1[i - 1] == str2[j - 1])
                    {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    }
                    else
                    {
                        dp[i][j] = dp[i - 1][j] > dp[i][j - 1] ? dp[i - 1][j] : dp[i][j - 1];
                    }
                }
            }
            printf("%d
    ", MaxLen - dp[n1][n2]);
        }
        return 0;
    }

    方法二:

    #include <stdio.h>
    #include <iostream>
    #include <string.h>
    using namespace std;
    
    int dp[1005][1005];
    
    int Min(int a, int b, int c)
    {
        a = a > b ? b : a;
        a = a > c ? c : a;
        return a;
    }
    
    
    int main()
    {
        char str1[1005];
        char str2[1005];
        int n1, n2;
        while(cin>>n1>>str1>>n2>>str2)
        {
            for (int i = 0; i <= n1; i++)
            {
                dp[i][0] = i;
            }
            for (int i = 0; i <= n2; i++)
            {
                dp[0][i] = i;
            }
            for (int i = 1; i <= n1; i++)
            {
                for (int j = 1; j <= n2; j++)
                {
                    if (str1[i - 1] == str2[j - 1])
                    {
                        dp[i][j] = Min(dp[i - 1][j - 1], dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                    }
                    else
                    {
                        dp[i][j] = Min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1;
                    }
                }
            }
            printf("%d
    ", dp[n1][n2]);
        }
        return 0;
    }
  • 相关阅读:
    Morpheus
    UCSC cancer genome
    LSF 作业系统常用命令
    R 语言处理excel为data.frame
    Expression Atlas
    Oncomine 数据库
    pathlib.Path 类的使用
    DT包 -- R语言中自定义表格数据
    R 目录及文件操作
    R 指定安装镜像的方法
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3180480.html
Copyright © 2020-2023  润新知