Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8101 | Accepted: 3212 |
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
IllustrationA G T A A G T * A G G CDeletion: * in the bottom line
| | | | | | |
A G T * C * T G A C G C
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC 11 AGTAAGTAGGC
Sample Output
4
题目大意:给定两个字符串,两个字符串的字母可以进行插入,删除,或者替换操作,问最少进行多少次操作可以使两个字符串相等。
解题方法:类似于最长公共子序列,有两种方法可以解答。第一种直接求两个字符串的最长公共子序列,然后用较长字符串的长度减去最长公共子序列的长度,第二种方法是直接求最少需要的操作。
方法一:
#include <stdio.h> #include <iostream> #include <string.h> using namespace std; int dp[1005][1005]; int main() { char str1[1005]; char str2[1005]; int n1, n2; int MaxLen; while(cin>>n1>>str1>>n2>>str2) { memset(dp, 0, sizeof(dp)); MaxLen = n1 > n2 ? n1 : n2; for (int i = 1; i <= n1; i++) { for (int j = 1; j <= n2; j++) { if (str1[i - 1] == str2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = dp[i - 1][j] > dp[i][j - 1] ? dp[i - 1][j] : dp[i][j - 1]; } } } printf("%d ", MaxLen - dp[n1][n2]); } return 0; }
方法二:
#include <stdio.h> #include <iostream> #include <string.h> using namespace std; int dp[1005][1005]; int Min(int a, int b, int c) { a = a > b ? b : a; a = a > c ? c : a; return a; } int main() { char str1[1005]; char str2[1005]; int n1, n2; while(cin>>n1>>str1>>n2>>str2) { for (int i = 0; i <= n1; i++) { dp[i][0] = i; } for (int i = 0; i <= n2; i++) { dp[0][i] = i; } for (int i = 1; i <= n1; i++) { for (int j = 1; j <= n2; j++) { if (str1[i - 1] == str2[j - 1]) { dp[i][j] = Min(dp[i - 1][j - 1], dp[i - 1][j] + 1, dp[i][j - 1] + 1); } else { dp[i][j] = Min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1; } } } printf("%d ", dp[n1][n2]); } return 0; }