• 垃圾邮件分类2


    1.读取

    # 1、读取数据集
    def read_dataset():
         file_path = r'SMSSpamCollection'
         sms = open(file_path, encoding='utf-8')
         sms_data = []
         sms_label = []
         csv_reader = csv.reader(sms, delimiter='	')
         for line in csv_reader:
            sms_label.append(line[0])  # 提取出标签
            sms_data.append(preprocessing(line[1]))  # 提取出特征
         sms.close()
         return sms_data, sms_label

    2.数据预处理

    # 2、数据预处理
    def preprocess(text):
         tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
         stops = stopwords.words('english')  # 使用英文的停用词表
         tokens = [token for token in tokens if token not in stops]  # 去除停用词
         tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
         wnl = WordNetLemmatizer()
         tag = nltk.pos_tag(tokens)  # 词性
         tokens = [wnl.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
         preprocessed_text = ' '.join(tokens)
         return preprocessed_text

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    # 3、划分数据集
    def split_dataset(data, label):
         x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
         return x_train, x_test, y_train, y_test

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    # 4、文本特征提取
    # 把文本转化为tf-idf的特征矩阵
    def tfidf_dataset(x_train,x_test):
         tfidf = TfidfVectorizer()
         X_train = tfidf.fit_transform(x_train)  
         X_test = tfidf.transform(x_test)
         return X_train, X_test, tfidf
    
    # 向量还原成邮件
    def revert_mail(x_train, X_train, model):
        s = X_train.toarray()[0]
        print("第一封邮件向量表示为:", s)
        a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
        print("非零元素的位置:", a)
        print("向量的非零元素的值:", s[a])
        b = model.vocabulary_  # 词汇表
        key_list = []
        for key, value in b.items():
            if value in a:
                key_list.append(key)  # key非0元素对应的单词
        print("向量非零元素对应的单词:", key_list)
        print("向量化之前的邮件:", x_train[0])

    5.模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    # 5、模型选择
    def mnb_model(x_train, x_test, y_train, y_test):
        mnb = MultinomialNB()
        mnb.fit(x_train, y_train)
        pre = mnb.predict(x_test)
        print("总数:", len(y_test))
        print("预测正确数:", (pre == y_test).sum())
        print("预测准确率:",sum(pre == y_test) / len(y_test))
        return pre

    6.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义 

    # 6、模型评价
    def class_report(pre, y_test):
        conf_matrix = confusion_matrix(y_test, pre)
        print("=====================================================")
        print("混淆矩阵:
    ", conf_matrix)
        c = classification_report(y_test, pre)
        print("分类报告:
    ", c)
        print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))

    完整代码:

    # -*- coding:utf-8 -*-
    from sklearn.model_selection import train_test_split
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import confusion_matrix, classification_report
    import numpy as np
     
    import nltk
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    import csv
    def get_wordnet_pos(treebank_tag):# 根据词性,生成还原参数pos
         if treebank_tag.startswith('J'):  # adj
            return nltk.corpus.wordnet.ADJ
         elif treebank_tag.startswith('V'):  # v
            return nltk.corpus.wordnet.VERB
         elif treebank_tag.startswith('N'):  # n
             return nltk.corpus.wordnet.NOUN
         elif treebank_tag.startswith('R'):  # adv
            return nltk.corpus.wordnet.ADV
         else:
           return nltk.corpus.wordnet.NOUN
     
     # 预处理
    def preprocessing(text):
         tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
         stops = stopwords.words('english')  # 使用英文的停用词表
         tokens = [token for token in tokens if token not in stops]  # 停用词
         tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
         lmtzr = WordNetLemmatizer()
         tag = nltk.pos_tag(tokens)  # 词性
         tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
         preprocessed_text = ' '.join(tokens)
         return preprocessed_text
     
    # 读取数据集
    def read_dataset():
         file_path =r'SMSSpamCollection'
         sms = open(file_path, encoding='utf-8')#读取数据
         sms_label = []  # 存储标题
         sms_data = []#存储数据
         csv_reader = csv.reader(sms, delimiter='	')
         for line in csv_reader:
            sms_label.append(line[0])  # 提取出标签
            sms_data.append(preprocessing(line[1]))  # 对每封邮件做预处理
         sms.close()
         return sms_data, sms_label
     
    # 划分数据集
    def split_dataset(data, label):
         x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
         return x_train, x_test, y_train, y_test
     
    # 把原始文本转化为tf-idf的特征矩阵
    def tfidf_dataset(x_train,x_test):
         tfidf = TfidfVectorizer()
         X_train = tfidf.fit_transform(x_train)  # X_train用fit_transform生成词汇表
         X_test = tfidf.transform(x_test)  # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
         return X_train, X_test, tfidf
     
    # 向量还原邮件
    def revert_mail(x_train, X_train, model):
        s = X_train.toarray()[0]
        print("第一封邮件向量表示为:", s)
        # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
        a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
        print("非零元素的位置:", a)
        print("向量的非零元素的值:", s[a])
        b = model.vocabulary_  # 词汇表
        key_list = []
        for key, value in b.items():
            if value in a:
                key_list.append(key)  # key非0元素对应的单词
        print("向量非零元素对应的单词:", key_list)
        print("向量化之前的邮件:", x_train[0])
     
    # 模型选择(根据数据特点选择多项式分布)
    def mnb_model(x_train, x_test, y_train, y_test):
        mnb = MultinomialNB()
        mnb.fit(x_train, y_train)
        ypre_mnb = mnb.predict(x_test)
        print("总数:", len(y_test))
        print("预测正确数:", (ypre_mnb == y_test).sum())
        return ypre_mnb
     
    # 模型评价:混淆矩阵,分类报告
    def class_report(ypre_mnb, y_test):
        conf_matrix = confusion_matrix(y_test, ypre_mnb)
        print("混淆矩阵:
    ", conf_matrix)
        c = classification_report(y_test, ypre_mnb)
        print("------------------------------------------")
        print("分类报告:
    ", c)
        print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))
     
    if __name__ == '__main__':
        sms_data, sms_label = read_dataset() # 读取数据集
        x_train, x_test, y_train, y_test = split_dataset(sms_data, sms_label) # 划分数据集
        X_train, X_test,tfidf = tfidf_dataset(x_train, x_test) # 把原始文本转化为tf-idf的特征矩阵
        revert_mail(x_train, X_train, tfidf) # 向量还原成邮件
        y_mnb = mnb_model(X_train, X_test, y_train,y_test) # 模型选择
        class_report(y_mnb, y_test) # 模型评价

    6.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

    • CountVectorizer:只考虑词汇在文本中出现的频率,属于词袋模型特征。
    • TfidfVectorizer: 除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量,能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征。属于Tfidf特征。
    • CountVectorizer与TfidfVectorizer相比,对于负类的预测更加准确,而正类的预测则稍逊色。但总体预测正确率也比TfidfVectorizer稍高,相比之下似乎CountVectorizer更适合进行预测。
  • 相关阅读:
    mysql替代like模糊查询的方法
    8个超实用的jQuery插件应用
    判断登陆设备是否为手机
    SQL tp3.2 批量更新 saveAll
    SQL-批量插入和批量更新
    防止手机端底部导航被搜索框顶起
    php COM
    thinkphp3.2 where 条件查询 复查的查询语句
    Form表单提交,js验证
    jupyter notebook 使用cmd命令窗口打开
  • 原文地址:https://www.cnblogs.com/lzhdonald/p/12957116.html
Copyright © 2020-2023  润新知