You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: [2,3,2]
Output: 3
Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),because they are adjacent houses.
Example 2:
Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).Total amount you can rob = 1 + 3 = 4.
Solution.
The thieft can only either rob house 0 or house n - 1, he can't rob these two houses at the same time as house 0 and n - 1 are adjacent. Consequently, we can break the circle into the following two cases and return the max value of them. Both cases have the same optimal substructure function. And we can reuse the same 1D array to calculate case 2 after calculating case 1.
1. can robber house 0
State: T[i]: the max value the thief can rob from the house[0....i]
Function: T[i] = max{T[i - 2] + nums[i], T[i - 1]}
Initialization:
T[0] = nums[0];
T[1] = Math.max(nums[0], nums[1]);
Answer:
T[n - 2]
2. can robber house n - 1
State: T[i]: the max value the thief can rob from the house[1....i]
Function: T[i] = max{T[i - 2] + nums[i], T[i - 1]}
Initialization:
T[0] = 0; //house 0 is not avaialbe for robbery
T[1] = nums[1];
Answer:
T[n - 1]
Runtime: O(n)
Space: O(n)
1 public class Solution {
2 public int houseRobber2(int[] nums) {
3 if(nums == null || nums.length == 0){
4 return 0;
5 }
6 if(nums.length == 1){
7 return nums[0];
8 }
9 if(nums.length == 2){
10 return Math.max(nums[0], nums[1]);
11 }
12 int n = nums.length;
13 int[] T = new int[n];
14 T[0] = nums[0];
15 T[1] = Math.max(nums[0], nums[1]);
16 for(int i = 2; i < n - 1; i++){
17 T[i] = Math.max(T[i - 2] + nums[i], T[i - 1]);
18 }
19 int max = T[n - 2];
20 T[0] = 0;
21 T[1] = nums[1];
22 for(int i = 2; i < n; i++){
23 T[i] = Math.max(T[i - 2] + nums[i], T[i - 1]);
24 }
25 return Math.max(max, T[n - 1]);
26 }
27 }
Optimization with O(1) extra space
1 public class Solution {
2 public int houseRobber2(int[] nums) {
3 if(nums == null || nums.length == 0){
4 return 0;
5 }
6 if(nums.length == 1){
7 return nums[0];
8 }
9 if(nums.length == 2){
10 return Math.max(nums[0], nums[1]);
11 }
12 int n = nums.length;
13 int[] T = new int[3];
14 T[0] = nums[0];
15 T[1] = Math.max(nums[0], nums[1]);
16 for(int i = 2; i < n - 1; i++){
17 T[i % 3] = Math.max(T[(i - 2) % 3] + nums[i], T[(i - 1) % 3]);
18 }
19 int max = T[(n - 2) % 3];
20 T[0] = 0;
21 T[1] = nums[1];
22 for(int i = 2; i < n; i++){
23 T[i % 3] = Math.max(T[(i - 2) % 3] + nums[i], T[(i - 1) % 3]);
24 }
25 return Math.max(max, T[(n - 1) % 3]);
26 }
27 }
Related Problems