• 2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy


    Information Entropy

    Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

    Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

    Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

    Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

    Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2, ..., xn} and probability mass functionP(X) as:

    H(X)=E(ln(P(x)))

    Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

    H(X)=i=1nP(xi)log b(P(xi))

    Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e, and dit (or digit) for b = 10 respectively.

    In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

    0log b(0)=limp0+plog b(p)

    Your task is to calculate the entropy of a finite sample with N values.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

    In the next line, there are N non-negative integers P1P2, .., PNPi means the probability of the i-th value in percentage and the sum of Pi will be 100.

    Output

    For each test case, output the entropy in the corresponding unit.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    3
    3 bit
    25 25 50
    7 nat
    1 2 4 8 16 32 37
    10 dit
    10 10 10 10 10 10 10 10 10 10
    

    Sample Output

    1.500000000000
    1.480810832465
    1.000000000000
    

    Author: ZHOU, Yuchen
    Source: The 2014 ACM-ICPC Asia Mudanjiang Regional Contest



    题目链接:Information Entropy



    解题思路:又是一道签到题!!!当时想多了。竟然纠结在积分上,果真是想多了,根本不须要什么技术,就是依照那个数学公式算。又学到了个小方法。表示对数能够用log(m, n)= log(n) / log(m). 还有就是e = exp(1)。

    还有就是注意当p = 0时,函数值为0。



    AC代码:

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <time.h>
    using namespace std;
    #define INF 0x7fffffff
    
    #define e exp(1.0)
    
    int main()
    {
        #ifdef sxk
            freopen("in.txt","r",stdin);
        #endif
        int T, n, p;
        string s;
        scanf("%d",&T);
        while(T--)
        {
            double ans = 0;
            scanf("%d",&n);
            cin>>s;
            if(s == "bit"){
                for(int i=0; i<n; i++){
                    scanf("%d", &p);
                    if(p)
                        ans += -(p/100.0*log(p/100.0)/log(2));
                }
            }
            else if(s == "nat"){
                for(int i=0; i<n; i++){
                    scanf("%d", &p);
                    if(p)
                        ans += -(p/100.0*log(p/100.0)/log(e));
                }
            }
            else{
                for(int i=0; i<n; i++){
                    scanf("%d", &p);
                    if(p)
                        ans += -(p/100.0*log(p/100.0)/log(10));
                }
            }
            printf("%.14lf
    ",ans);
        }
        return 0;
    }
    





  • 相关阅读:
    最小二乘法拟合圆
    OpenCV solve() 解线性方程
    Halcon、OpenCV、C++ 实现最小二乘法拟合直线
    Halcon 字符串与HTuple互转,double与HTuple互转,Mat与HObject互转
    Halcon的HWindowControl控件在WinForm程序中的使用介绍(重点解决图片缩放的问题)
    将Halcon HObject类型转为Qt QImage类型
    Halcon HImage 与 Qt QImage 的相互转换
    Qt 加载DLL的几种方式小结
    Halcon17无法加载"hdevenginecpp":找不到指定的模块
    Halcon 安装提示 could not write updated path to HKLM
  • 原文地址:https://www.cnblogs.com/lytwajue/p/7161983.html
Copyright © 2020-2023  润新知