• hdu5296(2015多校1)--Annoying problem(lca+一个公式)


    Annoying problem

    Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 483    Accepted Submission(s): 148


    Problem Description
    Coco has a tree, whose nodes are conveniently labeled by 1,2,…,n, which has n-1 edge,each edge has a weight. An existing set S is initially empty.
    Now there are two kinds of operation:

    1 x: If the node x is not in the set S, add node x to the set S
    2 x: If the node x is in the set S,delete node x from the set S

    Now there is a annoying problem: In order to select a set of edges from tree after each operation which makes any two nodes in set S connected. What is the minimum of the sum of the selected edges’ weight ?

     

    Input
    one integer number T is described in the first line represents the group number of testcases.( T<=10 ) 
    For each test:
    The first line has 2 integer number n,q(0<n,q<=100000) describe the number of nodes and the number of operations.
    The following n-1 lines each line has 3 integer number u,v,w describe that between node u and node v has an edge weight w.(1<=u,v<=n,1<=w<=100)
    The following q lines each line has 2 integer number x,y describe one operation.(x=1 or 2,1<=y<=n)


     

    Output
    Each testcase outputs a line of "Case #x:" , x starts from 1.
    The next q line represents the answer to each operation.

     

    Sample Input
    1 6 5 1 2 2 1 5 2 5 6 2 2 4 2 2 3 2 1 5 1 3 1 4 1 2 2 5
     

    Sample Output
    Case #1: 0 6 8 8 4
     

    Author
    FZUACM
     

    题目大意:给出一棵树,每一个边都有一个权值,如今有一个空的集合,两种操作,1 x吧x节点放到集合中(假设还没放入),2 x把x节点从集合中拿出来(已放入)。如今要求将集合中的点之间的边权之和

    dfn[u] - dfn[ lca(x,u) ] - dfn[ lca(y,u) ] + dfn[ lca(x,y) ]

    神一样的公式呀,表示比赛时根本就没想过要推公式,,。,,

    先说这个公式怎么用,首先dfs一个顺序,加一个节点u。假设u节点的dfs序,在集合中节点的dfs序之间,那么找到最接近的(u的dfs序)的两个数为x和y;假设u节点的dfs序在集合中节点的dfs序的一側,那么x和y为集合中dfs序的最大值和最小值,,,,,这样带入公式中求的就是加入这个节点所带来的须要加入的距离。删除一个节点和加入时一样的。

    如果节点要连接到一个链中,链的定点(x,y),那么u连接到x的距离是dfn[u] + dfn[x] - 2dfn[ lca(u,x) ] ;

    u连接到y的距离dfn[u] + dfn[y] - 2dfn[ lca(u,x) ] :

    x连接到y的距离dfn[x] + dfn[y] - 2dfn[ lca(x,y) ] :

    u连接到x-y这个链的距离 = (u到y+u到x-x到y)/2


    #include <cstdio>
    #include <cstring>
    #include <set>
    #include <algorithm>
    using namespace std ;
    #define maxn 100050
    struct E{
        int v , w ;
        int next ;
    }edge[maxn<<1];
    int head[maxn] , cnt ;
    int rmq[maxn][20] ;
    int dep[maxn] , p[maxn] , belong[maxn] , cid ;
    int vis[maxn] , dfn[maxn] ;
    set<int> s ;
    set<int>::iterator iter ;
    void add(int u,int v,int w) {
        edge[cnt].v = v ; edge[cnt].w = w ;
        edge[cnt].next = head[u] ; head[u] = cnt++ ;
        edge[cnt].v = u ; edge[cnt].w = w ;
        edge[cnt].next = head[v] ; head[v] = cnt++ ;
    }
    void dfs(int fa,int u) {
        int i , j , v ;
        p[u] = ++cid ;
        belong[cid] = u ;
        for(i = head[u] ; i != -1 ; i = edge[i].next ) {
            v = edge[i].v ;
            if( v == fa ) continue ;
            dfn[v] = dfn[u] + edge[i].w ;
            rmq[v][0] = u ;
            for(j = 1 ; j < 19 ; j++)
                rmq[v][j] = rmq[ rmq[v][j-1] ][j-1] ;
            dep[v] = dep[u] + 1 ;
            dfs(u,v) ;
        }
    }
    int lca(int u,int v) {
        if( dep[u] < dep[v] ) swap(u,v) ;
        int i ;
        for(i = 19 ; i >= 0 ; i--) {
            if( dep[ rmq[u][i] ] >= dep[v] )
                u = rmq[u][i] ;
            if( u == v ) return u ;
        }
        for(i = 19 ; i >= 0 ; i--) {
            if( rmq[u][i] != rmq[v][i] ) {
                u = rmq[u][i] ;
                v = rmq[v][i] ;
            }
        }
        return rmq[u][0] ;
    }
    int solve(int u) {
        if( s.empty() ) return 0 ;
        int x , y ;
        iter = s.upper_bound(u) ;
        if( iter == s.end() || iter == s.begin() ) {
            x = belong[ *s.begin() ] ;
            y = belong[ *s.rbegin() ] ;
        }
        else {
            x = belong[*iter] ;
            iter-- ;
            y = belong[*iter] ;
        }
        u = belong[u] ;
        return dfn[u] - dfn[ lca(x,u) ] - dfn[ lca(y,u) ] + dfn[ lca(x,y) ] ;
    }
    int main() {
        int Step = 0 , t ;
        int n , m ;
        int i , j , u , v , w , k ;
        int ans ;
        scanf("%d", &t) ;
        while( t-- ) {
            memset(head,-1,sizeof(head)) ;
            memset(rmq,0,sizeof(rmq)) ;
            memset(dfn,0,sizeof(dfn)) ;
            memset(vis,0,sizeof(vis)) ;
            cnt = cid = ans = 0 ;
            s.clear() ;
            scanf("%d %d", &n, &m) ;
            for(i = 1 ; i < n ; i++) {
                scanf("%d %d %d", &u, &v, &w) ;
                add(u,v,w) ;
            }
            dep[1] = 1 ;
            dfs(-1,1) ;
            printf("Case #%d:
    ", ++Step) ;
            while( m-- ) {
                scanf("%d %d", &k, &u) ;
                u = p[u] ;
                if( k == 1 ) {
                    if( !vis[u] ) {
                        vis[u] = 1 ;
                        ans += solve(u) ;
                        s.insert(u) ;
                    }
                }
                else {
                    if( vis[u] ) {
                        vis[u] = 0 ;
                        s.erase(u) ;
                        ans -= solve(u) ;
                    }
                }
                printf("%d
    ", ans) ;
            }
        }
        return 0 ;
    }
    


  • 相关阅读:
    C# 数据操作系列
    C# 数据操作系列
    C# 基础知识系列- 17 小工具优化
    C# 基础知识系列- 17 实战篇 编写一个小工具(1)
    计算机网络知识概述
    微信公众号开发:消息处理
    微信公众号开发:服务器配置
    C#调用接口注意要点
    npm安装和Vue运行
    实战spring自定义属性(schema)
  • 原文地址:https://www.cnblogs.com/lytwajue/p/6851604.html
Copyright © 2020-2023  润新知