• RDD的转换操作


    1.map、flatMap、distinct
      map说明:将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素。
           输入分区与输出分区一对一,即:有多少个输入分区,就有多少个输出分区。
      flatMap说明:同Map算子一样,最后将所有元素放到同一集合中;
      distinct说明:将RDD中重复元素做去重处理
        注意:针对Array[String]类型,将String对象视为字符串数组
        scala> val rdd =sc.textFile("/worldcount/test1.txt")
        rdd: org.apache.spark.rdd.RDD[String] = /worldcount/test1.txt MapPartitionsRDD[1] at textFile at <console>:24

        scala> val rdd1 = rdd.map(x=>x.split(" "))
        rdd1: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:26

        scala> rdd1.collect
        res0: Array[Array[String]] = Array(Array(hello, world), Array(how, are, you?), Array(ni, hao), Array(hello, tom))

        scala> val rdd2 = rdd1.flatMap(x=>x)
        rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at flatMap at <console>:28

        scala> rdd2.collect
        res1: Array[String ] = Array(hello, world, how, are, you?, ni, hao, hello, tom)

        scala> rdd2.flatMap(x=>x).collect
        res3: Array[Char] = Array(h, e, l, l, o, w, o, r, l, d, h, o, w, a, r, e, y, o, u, ?, n, i, h, a, o, h, e, l, l, o, t, o, m)

        scala> val rdd3 = rdd2.distinct
        rdd3: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[7] at distinct at <console>:30

        scala> rdd3.collect
        res4: Array[String] = Array(are, tom, how, you?, hello, hao, world, ni)

    2.coalesce和repartition:修改RDD分区数:重分区
      coalesce说明:将RDD的分区数进行修改,并生成新的RDD;有两个参数:第一个参数为分区数,第二个参数为shuffle Booleean类型,默认为false
             如果更改分区数比原有RDD的分区数小,shuffle为false;
             如果更改分区数比原有RDD的分区数大,shuffle必须为true;
      应用说明:一般处理filter或简化操作时,新生成的RDD中分区内数据骤减,可考虑重分区
        scala> val rdd4 = rdd.coalesce(1)
        rdd4: org.apache.spark.rdd.RDD[String] = CoalescedRDD[8] at coalesce at <console>:26

        scala> rdd4.partitions.size
        res10: Int = 1

        scala> val rdd5 = rdd.coalesce(5)
        rdd5: org.apache.spark.rdd.RDD[String] = CoalescedRDD[9] at coalesce at <console>:26

        scala> rdd5.partitions.size
        res12: Int = 2

        scala> val rdd5 = rdd.coalesce(5,true)
        rdd5: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[13] at coalesce at <console>:26

        scala> rdd5.partitions.size
        res13: Int = 5

    3.randomSplit:
      def randomSplit(weights: Array[Double], seed: Long = Utils.random.nextLong): Array[RDD[T]]
      说明:将RDD按照权重(weights)进行随机分配,返回指定个数的RDD集合;
      应用案例:Hadoop全排操作
        scala> val rdd = sc.parallelize(List(1,2,3,4,5,6,7))
        rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24

        scala> val rdd1 = rdd.randomSplit(Array(0.5,2.5,7))
        rdd1: Array[org.apache.spark.rdd.RDD[Int]] = Array(MapPartitionsRDD[1] at randomSplit at <console>:26, MapPartitionsRDD[2] at randomSplit at <console>:26, MapPartitionsRDD[3] at randomSplit at     <console>:26)

        scala> rdd1(0).collect
        res0: Array[Int] = Array(1, 5)

        scala> rdd1(1).collect
        res1: Array[Int] = Array()

        scala> rdd1(2).collect
        res2: Array[Int] = Array(2, 3, 4, 6, 7)

    4.glom
      说明:返回每个分区中的数据项
      scala>val a = sc.parallelize(1 to 100, 3)
      scala>a.glom.collect
    5.union:并集
      说明:将两个RDD进行合并,不去重
      scala>val rdd = sc.parallelize(1 to 6)
      scala>val rdd1 = sc.parallelize(7 to 10)
      scala>val rdd2 =rdd.union(rdd1)
    6.subtrat:差集
      val a = sc.parallelize(1 to 9, 3)
      val b = sc.parallelize(1 to 3, 3)
      val c = a.subtract(b)
      c.collect
      res3: Array[Int] = Array(6, 9, 4, 7, 5, 8)
    7.intersection:交集,去重
      val x = sc.parallelize(1 to 20)
      val y = sc.parallelize(10 to 30)
      val z = x.intersection(y)
      z.collect
      res74: Array[Int] = Array(16, 12, 20, 13, 17, 14, 18, 10, 19, 15, 11)

    8.mapPartitions
      说明:针对每个分区进行操作;
      应用:对RDD进行数据库操作时,需采用mapPartitions对每个分区实例化数据库连接conn对象;
      val a = sc.parallelize(1 to 9, 3)
      def myfunc[T](iter: Iterator[T]) : Iterator[(T, T)] = {
        var res = List[(T, T)]()
        var pre = iter.next
        while (iter.hasNext)
        {
          val cur = iter.next;
          res .::= (pre, cur)
          pre = cur;
        }
        res.iterator
      }
      a.mapPartitions(myfunc).collect
      res0: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))
    9.mapPartitionsWithIndex
      val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 3)
      def myfunc(index: Int, iter: Iterator[Int]) : Iterator[String] = {
        iter.map(x => index + "," + x)
      }
      注意:iter: Iterator[Int]:Iterator[T]类型,应和RDD内部数据类型一致
      x.mapPartitionsWithIndex(myfunc).collect()
      res10: Array[String] = Array(0,1, 0,2, 0,3, 1,4, 1,5, 1,6, 2,7, 2,8, 2,9, 2,10)

    10.zip
      def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
      说明:1.两个RDD之间数据类型可以不同;
         2.要求每个RDD具有相同的分区数
         3.需RDD的每个分区具有相同的数据个数
    11.zipParititions
      要求:需每个RDD具有相同的分区数;
    12.zipWithIndex
      def zipWithIndex(): RDD[(T, Long)]
      将现有的RDD的每个元素和相对应的Index组合,生成新的RDD[(T,Long)]
    13.zipWithUniqueId
      def zipWithUniqueId(): RDD[(T, Long)]

      scala> val rdd = sc.parallelize(List(1,2,3,4,5),2)
      rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[21] at parallelize at <console>:24

      scala> rdd.glom.collect
      res25: Array[Array[Int]] = Array(Array(1, 2), Array(3, 4, 5))

      scala> val rdd2 = rdd.zipWithUniqueId()
      rdd2: org.apache.spark.rdd.RDD[(Int, Long)] = MapPartitionsRDD[23] at zipWithUniqueId at <console>:26

      scala> rdd2.collect
      res26: Array[(Int, Long)] = Array((1,0), (2,2), (3,1), (4,3), (5,5))
      计算规则:
        step1:第一个分区的第一个元素0,第二个分区的第一个元素1
        step2:第一个分区的第二个元素0+2
        step2:第二个分区的第二个元素1+2=3;第二个分区的第三个元素3+2=5;

    14.reduceByKey
      def reduceByKey(func: (V, V) => V): RDD[(K, V)]
      说明:合并具有相同键的值
      val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)
      val b = a.map(x => (x.length, x))
      b.reduceByKey(_ + _).collect
      res86: Array[(Int, String)] = Array((3,dogcatowlgnuant))

      val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
      val b = a.map(x => (x.length, x))
      b.reduceByKey(_ + _).collect
      res87: Array[(Int, String)] = Array((4,lion), (3,dogcat), (7,panther), (5,tigereagle))
    15.groupByKey()
      def groupByKey(): RDD[(K, Iterable[V])]
      说明:按照相同的key进行分组,返回值为RDD[(K, Iterable[V])]
      val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "spider", "eagle"), 2)
      val b = a.keyBy(_.length)
      b.groupByKey.collect
      res11: Array[(Int, Seq[String])] = Array((4,ArrayBuffer(lion)), (6,ArrayBuffer(spider)), (3,ArrayBuffer(dog, cat)), (5,ArrayBuffer(tiger, eagle)))

    16.keyBy
      def keyBy[K](f: T => K): RDD[(K, T)]
      说明:将f函数的返回值作为Key,与RDD的每个元素构成piarRDD{RDD[(K, T)]}
      val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
      val b = a.keyBy(_.length)
      b.collect
      res26: Array[(Int, String)] = Array((3,dog), (6,salmon), (6,salmon), (3,rat), (8,elephant))
    17.keys
      def keys: RDD[K]
      说明:返回具有key的RDD
      val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
      val b = a.map(x => (x.length, x))
      b.keys.collect
      res2: Array[Int] = Array(3, 5, 4, 3, 7, 5)
    18.values
      def values: RDD[V]
      说明:返回具有value的RDD
      val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
      val b = a.map(x => (x.length, x))
      b.values.collect
      res3: Array[String] = Array(dog, tiger, lion, cat, panther, eagle)

    19.sortByKey
      def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.size): RDD[P]
      说明:根据key进行排序,默认为ascending: Boolean = true(“升序”)
      val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)
      val b = sc.parallelize(1 to a.count.toInt, 2)
      val c = a.zip(b)
      c.sortByKey(true).collect
      res74: Array[(String, Int)] = Array((ant,5), (cat,2), (dog,1), (gnu,4), (owl,3))
      c.sortByKey(false).collect
      res75: Array[(String, Int)] = Array((owl,3), (gnu,4), (dog,1), (cat,2), (ant,5))
    20.partitionBy
      def partitionBy(partitioner: Partitioner): RDD[(K, V)]
      说明:通过设置Partitioner对RDD进行重分区
      scala> val rdd = sc.parallelize(List((1,"a"),(2,"b"),(3,"c"),(4,"d")),2)
      rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[26] at parallelize at <console>:24

      scala> rdd.glom.collect
      res28: Array[Array[(Int, String)]] = Array(Array((1,a), (2,b)), Array((3,c), (4,d)))

      scala> val rdd1=rdd.partitionBy(new org.apache.spark.HashPartitioner(2))
      rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[28] at partitionBy at <console>:26

      scala> rdd1.glom.collect
      res29: Array[Array[(Int, String)]] = Array(Array((4,d), (2,b)), Array((1,a), (3,c)))

     

  • 相关阅读:
    【小贴士】zepto find元素以及ios弹出键盘可能让你很头疼
    【iScroll源码学习04】分离IScroll核心
    【iScroll源码学习03】iScroll事件机制与滚动条的实现
    展望14,献给困惑的初级前端,理想不甘消磨,目标不能停滞!
    【iScroll源码学习02】分解iScroll三个核心事件点
    原生andriod浏览器回退后dom(click)事件全体失效问题探究
    【iScroll源码学习01】准备阶段
    【iScroll源码学习00】模拟iScroll
    【再探backbone 03】博客园单页应用实例(提供源码)
    【再探backbone 02】集合-Collection
  • 原文地址:https://www.cnblogs.com/lyr999736/p/9556515.html
Copyright © 2020-2023  润新知