$f命题:$ $(f{似序不等式})$设$fleft( x ight),gleft( x ight)$均在$left[ {a,b} ight]$上连续且函数的单调性相同,则
[left( {b - a} ight)int_a^b {fleft( x ight)gleft( x ight)dx} ge int_a^b {fleft( x ight)dx} int_a^b {gleft( x ight)dx} ]
$f命题:$$(f{Tschebyscheff不等式})$设$pleft( x ight)$在$left[ {a,b} ight]$非负连续,$fleft( x ight),gleft( x ight)$在$left[ {a,b} ight]$上连续且单调递增,则
[left( {int_a^b {pleft( x ight)fleft( x ight)dx} } ight)left( {int_a^b {pleft( x ight)gleft( x ight)dx} } ight) le left( {int_a^b {pleft( x ight)dx} } ight)left( {int_a^b {pleft( x ight)fleft( x ight)gleft( x ight)dx} } ight)]
$f命题:$$(f{Kantorovich不等式})$设正值函数$fleft( x ight)$在$left[ {0,1} ight]$上连续,$m = mathop {min}limits_{x in left[ {0,1} ight]} fleft( x ight),M = mathop {max}limits_{x in left[ {0,1} ight]} fleft( x ight)$,则
[int_0^1 {fleft( x ight)dx} int_0^1 {frac{1}{{fleft( x ight)}}dx} le frac{{{{left( {m + M} ight)}^2}}}{{4mM}}]
$f命题:$设$f:[-1,1] o { ext{R}}$为偶函数,$f$在$[0,1]$上单调递增,又设$g$是$[-1,1]$上的凸函数,即对任意的$x,yin [-1,1]$及$tin (0,1)$有$gleft( {tx + left( {1 - t} ight)y} ight) leqslant tgleft( x ight) + left( {1 - t} ight)gleft( y ight)$,则[2int_{ - 1}^1 {fleft( x ight)gleft( x ight)dx} geqslant int_{ - 1}^1 {fleft( x ight)dx} int_{ - 1}^1 {gleft( x ight)dx} ]
$f命题:$设$fleft( x ight)$在$left[ {a,b} ight]$连续且单调递增,则
[int_a^b {xfleft( x ight)dx} ge frac{{a + b}}{2}int_a^b {fleft( x ight)dx} ]
$f命题:$设函数$fleft( x ight)$在$left[ {0,1} ight]$上连续,且$0 le fleft( x ight) < 1$,则[int_0^1 {frac{{fleft( x ight)}}{{1 - fleft( x ight)}}dx ge frac{{int_0^1 {fleft( x ight)dx} }}{{1 - int_0^1 {fleft( x ight)dx} }}} ]
$f命题:$设$a,b > 0,fleft( x ight) geqslant 0,fleft( x ight) in Rleft[ {a,b} ight],int_a^b {xfleft( x ight)dx} = 0$,则[int_a^b {{x^2}fleft( x ight)dx} leqslant abint_a^b {fleft( x ight)dx} ]
$f命题:$设$fin (0,1)$,且无穷积分$int_0^{ + infty } {fleft( x ight)dx} ,int_0^{ + infty } {xfleft( x ight)dx} $均收敛,证明:[int_0^{ + infty } {xfleft( x ight)dx} > frac{1}{2}{left( {int_0^{ + infty } {fleft( x ight)dx} } ight)^2}]
$f命题:$设$f(x)$为$[0,+infty)$上非负可导函数,且$fleft( 0 ight) = 0,f'left( x ight) leqslant frac{1}{2}$,若$int_0^{ + infty } {fleft( x ight)dx} $收敛,证明:对$forall alpha > 1$,有$int_0^{ + infty } {{f^alpha }left( x ight)dx} $收敛,且[int_0^{ + infty } {{f^alpha }left( x ight)dx} leqslant {left( {int_0^{ + infty } {fleft( x ight)dx} } ight)^eta },eta = frac{{alpha + 1}}{2}]
$f命题:$$(f{Bellman -Gronwall不等式})$设常数$k > 0$,函数$f,g$在$left[ {a,b} ight]$上非负连续,且对任意$x in left[ {a,b} ight]$满足
[fleft( x
ight) ge k + int_a^x {gleft( t
ight)fleft( t
ight)dt} ]
证明:对任意$x in left[ {a,b}
ight]$,有$fleft( x
ight) ge k{e^{int_a^x {gleft( t
ight)dt} }}$
$f命题:$