$f命题:$设$fleft( x ight) in {C^1}left( { - infty , + infty } ight)$,令[{f_n}left( x ight) = nleft[ {fleft( {x + frac{1}{n}} ight) - fleft( x ight)} ight]]
证明:对任意$x in left[ {a,b} ight] subset left( { - infty , + infty } ight)$,有${f_n}left( x ight)$一致收敛于$f'left( x ight)$
$f命题:$设$fleft( x ight) in Cleft( { - infty , + infty } ight)$,令[{f_n}left( x ight) = sumlimits_{k = 0}^{n - 1} {frac{1}{n}} fleft( {x + frac{k}{n}} ight)]
证明:对任意$x in left[ {a,b} ight] subset left( { - infty , + infty } ight)$,有${f_n}left( x ight)$一致收敛于$int_0^1 {fleft( {x + t} ight)dt}$
$f命题:$$left( f{Dini定理} ight)$设函数列$left{ {{f_n}left( x ight)} ight}$的每一项及其极限函数$fleft( x ight)$
均在$x in left[ {a,b} ight]$上连续,且对每个$ x in left[ {a,b} ight]$有$left{ {{f_n}left( x ight)} ight}$为单调数列,则函数列$left{ {{f_n}left( x ight)} ight}$在$left[ {a,b} ight]$上一致收敛于${fleft( x ight)}$
$f命题:$