• CUDA编程学习(二)


    将数据加载到GPU后,如何在grid下的block进行并行计算(一个grid包含多个block)

    /****How do we run code in parallel on the device****/    
    /****Use block****/
        
    _global_ void add(int *a, int *b, int *c)
    {
        c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
    }
    
    #define N 512
    
    int main()
    {
        int *a, *b, *c;            //host copies of a, b, c
        int *d_a, *d_b, *d_c;    //device copies of a, b, c
        int size = N * sizeof(int);
        
        //Alloc space for device copies of a, b, c
        cudaMalloc((void **)&d_a, size);
        cudaMalloc((void **)&d_b, size);
        cudaMalloc((void **)&d_c, size);
        
        //Alloc space for host copies of a, b, c and setup input values
        a = (int *)malloc(size); random_ints(a, N);
        b = (int *)malloc(size); random_ints(b, N);
        c = (int *)malloc(size); 
        
        //Copy the data into device
        cudeMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
        
        //Launch add() kernel on GPU with N blocks
        add<<<N,1>>>(d_a, d_b, d_c);
        
        //Copy result back to host
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
        
        //Cleanup
        free(a); free(b); free(c);
        cudeFree(d_a); cudaFree(d_b); cudaFree(d_c);
        return 0;
    
    }
    
    
    /**** What's the function of random_ints****/
    void random_ints(int* a, int N)
    {
     int i;
     for (i = 0; i < N; ++i)
     a[i] = rand();
    }
  • 相关阅读:
    二维数组和指向指针的指针
    多路复用构建高性能服务器
    disque概要
    漫谈云计算与SOA (1)
    zeromq
    自定义内存分配
    基于行的操作
    反应器类型的操作
    多个流,简短的读和写
    缓存
  • 原文地址:https://www.cnblogs.com/lxy2017/p/4130440.html
Copyright © 2020-2023  润新知