问题描写叙述:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
基本思路:
此题能够用动态规划算法解决。
到达grid[i][j]仅仅有两种方式,从grid[i-1][j]向右移动或grid[i][j-1]向下移动。(PS:i >1 , j>1);
至于i = 1 和 j = 1 的情形仅仅有一种方法能够到达,能够提前算好初始化。
然后利用上面的两种途径找最短的作为到达grid[i][j]的最短路径。
代码:
int minPathSum(vector<vector<int> > &grid) { //C++ int rows = grid.size(); if(rows == 0) return 0; int cols = grid[0].size(); int upLine = 0; for(int i = 0; i < cols; i++) upLine += grid[0][i]; for(int i = 1; i< rows; i++) upLine += grid[i][cols-1]; //init vector<vector<int> > record ; for(int i = 0; i< rows; i++) { vector<int> tmp(cols,upLine); record.push_back(tmp); } int tmp = 0; for(int i = 0; i < cols; i++) { record[0][i] = tmp+grid[0][i]; tmp = record[0][i]; } tmp = 0; for(int j = 0; j < rows; j++) { record[j][0] =tmp + grid[j][0]; tmp = record[j][0]; } for(int i = 1; i < rows; i++) for(int j = 1; j < cols; j++) record[i][j] = grid[i][j] + ((record[i][j-1] < record[i-1][j])?record[i][j-1]:record[i-1][j]); return record[rows-1][cols-1]; }