• Tempter of the Bone


    Problem Description
    The doggie found a bone in an ancient maze, which fascinated him a lot. However, when he picked it up, the maze began to shake, and the doggie could feel the ground sinking. He realized that the bone was a trap, and he tried desperately to get out of this maze. The maze was a rectangle with sizes N by M. There was a door in the maze. At the beginning, the door was closed and it would open at the T-th second for a short period of time (less than 1 second). Therefore the doggie had to arrive at the door on exactly the T-th second. In every second, he could move one block to one of the upper, lower, left and right neighboring blocks. Once he entered a block, the ground of this block would start to sink and disappear in the next second. He could not stay at one block for more than one second, nor could he move into a visited block. Can the poor doggie survive? Please help him.
     

    Input
    The input consists of multiple test cases. The first line of each test case contains three integers N, M, and T (1 < N, M < 7; 0 < T < 50), which denote the sizes of the maze and the time at which the door will open, respectively. The next N lines give the maze layout, with each line containing M characters. A character is one of the following: 'X': a block of wall, which the doggie cannot enter; 'S': the start point of the doggie; 'D': the Door; or '.': an empty block. The input is terminated with three 0's. This test case is not to be processed.
     

    Output
    For each test case, print in one line "YES" if the doggie can survive, or "NO" otherwise.
     

    Sample Input
    4 4 5 S.X. ..X. ..XD .... 3 4 5 S.X. ..X. ...D 0 0 0
     

    Sample Output
    NO YES
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    char a[10][10];
    bool f[10][10], flag;
    int n, m, t, xx, yy;
    int vir[] = {0, 1, 0, -1, 0};
    int dfs(int x, int y, int temp)
    {
        if (flag)return 0;
        if (x == xx && y == yy && temp == t) {
            flag = 1;
            return 1;
        }
        if (temp > t)return 0;
        f[x][y] = 1;
        int mp = abs(x - xx) + abs(y - yy);
        mp = t - mp - temp;
        if (mp & 1)return 0;
        for (int i = 0; i < 4; i++) {
            int ax = x + vir[i];
            int ay = y + vir[i + 1];
            if (ax >= 1 && ax <= n && ay >= 1 && ay <= m && a[ax][ay] != 'X' && f[ax][ay] != 1) {
    
               // f[ax][ay] = 1;
                dfs(ax, ay, temp + 1);
                //f[ax][ay] = 0;
            }
        }
        f[x][y] = 0;
        return 0;
    }
    int main()
    {
        int x, y;
        while (scanf("%d %d %d", &n, &m, &t)) {
            if (n == m && m == t && t == 0)break;
            flag = 0;
            memset(f, 0, sizeof(f));
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= m; j++) {
                    cin >> a[i][j];
                    if (a[i][j] == 'S') {
                        x = i;
                        y = j;
                        a[i][j] = '.';
                    }
                    if (a[i][j] == 'D') {
                        xx = i;
                        yy = j;
                        a[i][j] = '.';
                    }
                }
            dfs(x, y, 0);
            if (flag)
                printf("YES
    "); // << endl;
            else  printf("NO
    ");
    
        }
        return 0;
    }
    


  • 相关阅读:
    3.5——课题选择
    3.8——K-th Substring
    01背包dp
    贪心——IQ
    Secret Project Gym
    快速幂&矩阵快速幂
    用栈非递归实现fib数列
    CodeForces Round #590 (Div 3)
    SQL Server常见问题
    SQL基础函数
  • 原文地址:https://www.cnblogs.com/lxjshuju/p/6900535.html
Copyright © 2020-2023  润新知