• BZOJ2194: 快速傅立叶之二 (FFT)


    题意:题如其名 求c_k = sigma (a_i * b_i - k)

    题解:一般FFT 要满足c_k = (sigma a_i * b_k - i)的形式

       于是这个题的技巧就是把b数组翻转一下 b_i = b_n - 1 - i (下标从0)

       题目就变形为c_k = sigma (a_i * b_n - 1 - i + k) = c_n - 1 + k 于是就上板子了

       kuangbin的板子还是很厉害的

    #include <stdio.h>
    #include <algorithm>
    #include <iostream>
    #include <string.h>
    #include <math.h>
    using namespace std;
    const double PI = acos(-1.0);
    
    struct Complex
    {
        double x, y;
        Complex(double _x = 0.0, double _y = 0.0)
        {
            x = _x;
            y = _y;
        }
        Complex operator + (const Complex &b) const
        {
            return Complex(x + b.x, y + b.y);
        }
        Complex operator - (const Complex &b) const
        {
            return Complex(x - b.x, y - b.y);
        }
        Complex operator * (const Complex &b) const
        {
            return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
        }
    };
    
    void change(Complex y[], int len)
    {
        int i, j, k;
        for(i = 1, j = len / 2; i < len - 1; i++)
        {
            if(i < j) swap(y[i], y[j]);
            k = len / 2;
            while(j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k) j += k;
        }
    }
    
    void fft(Complex y[], int len, int on)
    {
        change(y, len);
        for(int h = 2; h <= len; h <<= 1)
        {
            Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
            for(int j = 0; j < len; j += h)
            {
                Complex w(1, 0);
                for(int k = j; k < j + h / 2; k++)
                {
                    Complex u = y[k];
                    Complex t = w * y[k + h / 2];
                    y[k] = u + t;
                    y[k + h / 2] = u - t;
                    w = w * wn;
                }
            }
        }
    
        if(on == -1)
            for(int i = 0; i < len; i++)
                y[i].x /= len;
    }
    
    Complex x1[400005], x2[400005];
    
    int main()
    {
        int n; scanf("%d", &n);
        int nn = n;
        for(int i = 0; i < n; i++)
        {
            double u, v;
            scanf("%lf%lf", &u, &v);
            x1[i] = Complex(u, 0);
            x2[n - i - 1] = Complex(v, 0);
        }
        n = 2 * n - 1;
        int len = 1;
        while(len < n) len <<= 1;
        for(int i = n; i < len; i++) x1[i] = x2[i] = Complex(0.0, 0.0);
    
        fft(x1, len, 1);
        fft(x2, len, 1);
        for(int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
        fft(x1, len, -1);
    
        for(int i = nn - 1; i < n; i++) printf("%d
    ", (int)(x1[i].x + 0.5));
        return 0;
    }
    View Code

       

  • 相关阅读:
    Python LED
    vmvare虚拟机经验
    Debian系统简要说明
    Android onclick监听事件打开新界面
    在国外搭个人服务器(顺便访问外网)
    生成指定时间内的 随机日起
    生成指定时间内的日期
    Mac 上查找javahome
    java 学习的网站
    Java 线程
  • 原文地址:https://www.cnblogs.com/lwqq3/p/9318102.html
Copyright © 2020-2023  润新知