• Educational Codeforces Round 4 D. The Union of k-Segments 排序


    D. The Union of k-Segments

    题目连接:

    http://www.codeforces.com/contest/612/problem/D

    Description

    You are given n segments on the coordinate axis Ox and the number k. The point is satisfied if it belongs to at least k segments. Find the smallest (by the number of segments) set of segments on the coordinate axis Ox which contains all satisfied points and no others.

    Input

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 106) — the number of segments and the value of k.

    The next n lines contain two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109) each — the endpoints of the i-th segment. The segments can degenerate and intersect each other. The segments are given in arbitrary order.

    Output

    First line contains integer m — the smallest number of segments.

    Next m lines contain two integers aj, bj (aj ≤ bj) — the ends of j-th segment in the answer. The segments should be listed in the order from left to right.

    Sample Input

    3 2

    0 5

    -3 2

    3 8

    Sample Output

    2

    0 2

    3 5

    Hint

    题意

    给你一堆区间,然后让你把覆盖k次及k次以上的区间都输出出来

    题解:

    直接暴力扫分界点就好了

    分界点是正向覆盖k次的就加进左端点,是反向,就加进右端点,然后输出就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    #define maxn 3000006
    pair<int,int> Line[maxn];
    int tot = 1;
    int t[maxn];
    int main()
    {
        int n,k;scanf("%d%d",&n,&k);
        for(int i=0;i<n;i++)
        {
            int x,y;scanf("%d%d",&x,&y);
            Line[tot++]=make_pair(x,-1);
            Line[tot++]=make_pair(y,1);
        }
        sort(Line+1,Line+tot);
        int flag1 = 0,flag2 = 0;
        vector<int> ans1;
        vector<int> ans2;
        for(int i=1;i<tot;i++)
        {
            t[i] = t[i-1] - Line[i].second;
            if(t[i]==k&&t[i-1]==k-1)
                ans1.push_back(Line[i].first);
        }
        memset(t,0,sizeof(t));
        for(int i=1;i<tot;i++)
        {
            t[i] = t[i-1] - Line[i].second;
    
            if(t[i]==k-1&&t[i-1]==k)
                ans2.push_back(Line[i].first);
        }
        if(ans1.size()!=ans2.size())
            ans2.push_back(Line[tot-1].first);
        cout<<ans1.size()<<endl;
        for(int i=0;i<ans1.size();i++)
            cout<<ans1[i]<<" "<<ans2[i]<<endl;
    }
  • 相关阅读:
    java.sql.SQLException: Io 异常: Got minus one from a read call
    ORACLE 数据库名、实例名、ORACLE_SID的区别
    如何查看oracle的sid
    expdp impdp 数据库导入导出命令详解
    Oracle连接数过多释放机制
    oracle查看允许的最大连接数和当前连接数等信息
    世界是无限的、复杂的、运动的
    世界
    世界观和方法论是一致的,有怎样的世界观就有怎样的方法论
    运动着的物质世界是普遍联系和永恒发展的
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5081843.html
Copyright © 2020-2023  润新知