• Java源码分析: HashMap 1.7[转载]


    前言
    HashMap 在 Java 和 Android 开发中非常常见
    今天,我将带来HashMap 的全部源码分析,希望你们会喜欢。
    本文基于版本 JDK 1.7,即 Java 7

    目录


    1. 简介
    类定义

    public class HashMap<K,V>
             extends AbstractMap<K,V> 
             implements Map<K,V>, Cloneable, Serializable


    主要介绍

    2. 数据结构
    2.1 具体描述
    HashMap 采用的数据结构 = 数组 + 单链表,具体描述如下

    2.2 示意图


    2.3 存储流程
    注:为了让大家有个感性的认识,只是简单的画出存储流程,更加详细 & 具体的存储流程会在下面源码分析中给出

     

    2.4 数组元素 & 链表节点的 实现类
    HashMap中的数组元素 & 链表节点 采用 Entry类 实现,如下图所示


    即 HashMap的本质 = 1个存储Entry类对象的数组 + 多个单链表
    Entry对象本质 = 1个映射(键 - 值对),属性包括:键(key)、值(value) & 下1节点( next) = 单链表的指针 = 也是一个Entry对象,用于解决hash冲突
    该类的源码分析如下
    具体分析请看注释

    /** 
     * Entry类实现了Map.Entry接口
     * 即 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
    **/  
    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;  //
        V value;  //
        Entry<K,V> next; // 指向下一个节点 ,也是一个Entry对象,从而形成解决hash冲突的单链表
        int hash;  // hash值
      
        /** 
         * 构造方法,创建一个Entry 
         * 参数:哈希值h,键值k,值v、下一个节点n 
         */  
        Entry(int h, K k, V v, Entry<K,V> n) {  
            value = v;  
            next = n;  
            key = k;  
            hash = h;  
        }  
      
        // 返回 与 此项 对应的键
        public final K getKey() {  
            return key;  
        }  
    
        // 返回 与 此项 对应的值
        public final V getValue() {  
            return value;  
        }  
      
        public final V setValue(V newValue) {  
            V oldValue = value;  
            value = newValue;  
            return oldValue;  
        }  
        
       /** 
         * equals()
         * 作用:判断2个Entry是否相等,必须key和value都相等,才返回true  
         */ 
          public final boolean equals(Object o) {  
            if (!(o instanceof Map.Entry))  
                return false;  
            Map.Entry e = (Map.Entry)o;  
            Object k1 = getKey();  
            Object k2 = e.getKey();  
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {  
                Object v1 = getValue();  
                Object v2 = e.getValue();  
                if (v1 == v2 || (v1 != null && v1.equals(v2)))  
                    return true;  
            }  
            return false;  
        }  
        
        /** 
         * hashCode() 
         */ 
        public final int hashCode() { 
            return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());  
        }  
      
        public final String toString() {  
            return getKey() + "=" + getValue();  
        }  
      
        /** 
         * 当向HashMap中添加元素时,即调用put(k,v)时, 
         * 对已经在HashMap中k位置进行v的覆盖时,会调用此方法 
         * 此处没做任何处理 
         */  
        void recordAccess(HashMap<K,V> m) {  
        }  
      
        /** 
         * 当从HashMap中删除了一个Entry时,会调用该函数 
         * 此处没做任何处理 
         */  
        void recordRemoval(HashMap<K,V> m) {  
        } 
    
    }

    3. 具体使用
    3.1 主要使用API(方法、函数)

    V get(Object key); // 获得指定键的值
    V put(K key, V value);  // 添加键值对
    void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
    V remove(Object key);  // 删除该键值对
    
    boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
    boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true
     
    Set<K> keySet();  // 单独抽取key序列,将所有key生成一个Set
    Collection<V> values();  // 单独value序列,将所有value生成一个Collection
    
    void clear(); // 清除哈希表中的所有键值对
    int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
    boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空 

    3.2 使用流程
    在具体使用时,主要流程是:
    声明1个 HashMap的对象
    向 HashMap 添加数据(成对 放入 键 - 值对)
    获取 HashMap 的某个数据
    获取 HashMap 的全部数据:遍历HashMap
    示例代码

    import java.util.Collection;
    import java.util.HashMap;
    import java.util.Iterator;
    import java.util.Map;
    import java.util.Set;
    
    public class HashMapTest {
    
        public static void main(String[] args) {
          /**
            * 1. 声明1个 HashMap的对象
            */
            Map<String, Integer> map = new HashMap<String, Integer>();
    
          /**
            * 2. 向HashMap添加数据(成对 放入 键 - 值对)
            */
            map.put("Android", 1);
            map.put("Java", 2);
            map.put("iOS", 3);
            map.put("数据挖掘", 4);
            map.put("产品经理", 5);
    
           /**
            * 3. 获取 HashMap 的某个数据
            */
            System.out.println("key = 产品经理时的值为:" + map.get("产品经理"));
    
          /**
            * 4. 获取 HashMap 的全部数据:遍历HashMap
            * 核心思想:
            * 步骤1:获得key-value对(Entry) 或 key 或 value的Set集合
            * 步骤2:遍历上述Set集合(使用for循环 、 迭代器(Iterator)均可)
            * 方法共有3种:分别针对 key-value对(Entry) 或 key 或 value
            */
    
            // 方法1:获得key-value的Set集合 再遍历
            System.out.println("方法1");
            // 1. 获得key-value对(Entry)的Set集合
            Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
    
            // 2. 遍历Set集合,从而获取key-value
            // 2.1 通过for循环
            for(Map.Entry<String, Integer> entry : entrySet){
                System.out.print(entry.getKey());
                System.out.println(entry.getValue());
            }
            System.out.println("----------");
            // 2.2 通过迭代器:先获得key-value对(Entry)的Iterator,再循环遍历
            Iterator iter1 = entrySet.iterator();
            while (iter1.hasNext()) {
                // 遍历时,需先获取entry,再分别获取key、value
                Map.Entry entry = (Map.Entry) iter1.next();
                System.out.print((String) entry.getKey());
                System.out.println((Integer) entry.getValue());
            }
    
    
            // 方法2:获得key的Set集合 再遍历
            System.out.println("方法2");
    
            // 1. 获得key的Set集合
            Set<String> keySet = map.keySet();
    
            // 2. 遍历Set集合,从而获取key,再获取value
            // 2.1 通过for循环
            for(String key : keySet){
                System.out.print(key);
                System.out.println(map.get(key));
            }
    
            System.out.println("----------");
    
            // 2.2 通过迭代器:先获得key的Iterator,再循环遍历
            Iterator iter2 = keySet.iterator();
            String key = null;
            while (iter2.hasNext()) {
                key = (String)iter2.next();
                System.out.print(key);
                System.out.println(map.get(key));
            }
    
    
            // 方法3:获得value的Set集合 再遍历
            System.out.println("方法3");
    
            // 1. 获得value的Set集合
            Collection valueSet = map.values();
    
            // 2. 遍历Set集合,从而获取value
            // 2.1 获得values 的Iterator
            Iterator iter3 = valueSet.iterator();
            // 2.2 通过遍历,直接获取value
            while (iter3.hasNext()) {
                System.out.println(iter3.next());
            }
    
        }
    
    
    }
    
    // 注:对于遍历方式,推荐使用针对 key-value对(Entry)的方式:效率高
    // 原因:
       // 1. 对于 遍历keySet 、valueSet,实质上 = 遍历了2次:1 = 转为 iterator 迭代器遍历、2 = 从 HashMap 中取出 key 的 value 操作(通过 key 值 hashCode 和 equals 索引)
       // 2. 对于 遍历 entrySet ,实质 = 遍历了1次 = 获取存储实体Entry(存储了key 和 value )

    运行结果

    方法1
    Java2
    iOS3
    数据挖掘4
    Android1
    产品经理5
    ----------
    Java2
    iOS3
    数据挖掘4
    Android1
    产品经理5
    方法2
    Java2
    iOS3
    数据挖掘4
    Android1
    产品经理5
    ----------
    Java2
    iOS3
    数据挖掘4
    Android1
    产品经理5
    方法3
    2
    3
    4
    1
    5


    下面,我们按照上述的使用过程,对一个个步骤进行源码解析

    4. 基础知识:HashMap中的重要参数(变量)
    在进行真正的源码分析前,先讲解HashMap中的重要参数(变量)
    HashMap中的主要参数 = 容量、加载因子、扩容阈值
    具体介绍如下

    // 1. 容量(capacity): HashMap中数组的长度
    // a. 容量范围:必须是2的幂 & <最大容量(2的30次方)
    // b. 初始容量 = 哈希表创建时的容量
      // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
      static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
      // 最大容量 =  2的30次方(若传入的容量过大,将被最大值替换)
      static final int MAXIMUM_CAPACITY = 1 << 30;
    
    // 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度
    // a. 加载因子越大、填满的元素越多 = 空间利用率高、但冲突的机会加大、查找效率变低(因为链表变长了)
    // b. 加载因子越小、填满的元素越少 = 空间利用率小、冲突的机会减小、查找效率高(链表不长)
      // 实际加载因子
      final float loadFactor;
      // 默认加载因子 = 0.75
      static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    // 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量) 
    // a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
    // b. 扩容阈值 = 容量 x 加载因子
      int threshold;
    
    // 4. 其他
     // 存储数据的Entry类型 数组,长度 = 2的幂
     // HashMap的实现方式 = 拉链法,Entry数组上的每个元素本质上是一个单向链表
      transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;  
     // HashMap的大小,即 HashMap中存储的键值对的数量
      transient int size;
     

    参数示意图


    此处 详细说明 加载因子


    5. 源码分析
    本次的源码分析主要是根据 使用步骤 进行相关函数的详细分析
    主要分析内容如下:


    下面,我将对每个步骤内容的主要方法进行详细分析
    步骤1:声明1个 HashMap的对象

    /**
      * 函数使用原型
      */
      Map<String,Integer> map = new HashMap<String,Integer>();
    
     /**
       * 源码分析:主要是HashMap的构造函数 = 4个
       * 仅贴出关于HashMap构造函数的源码
       */
      public class HashMap<K,V>
          extends AbstractMap<K,V>
          implements Map<K,V>, Cloneable, Serializable{
    
        // 省略上节阐述的参数
        
      /**
         * 构造函数1:默认构造函数(无参)
         * 加载因子 & 容量 = 默认 = 0.75、16
         */
        public HashMap() {
            // 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
            // 传入的指定容量 & 加载因子 = 默认
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); 
        }
    
        /**
         * 构造函数2:指定“容量大小”的构造函数
         * 加载因子 = 默认 = 0.75 、容量 = 指定大小
         */
        public HashMap(int initialCapacity) {
            // 实际上是调用指定“容量大小”和“加载因子”的构造函数
            // 只是在传入的加载因子参数 = 默认加载因子
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
            
        }
    
        /**
         * 构造函数3:指定“容量大小”和“加载因子”的构造函数
         * 加载因子 & 容量 = 自己指定
         */
        public HashMap(int initialCapacity, float loadFactor) {
    
            // HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
    
            // 设置 加载因子
            this.loadFactor = loadFactor;
            // 设置 扩容阈值 = 初始容量
            // 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解  
            threshold = initialCapacity;   
    
            init(); // 一个空方法用于未来的子对象扩展
        }
    
        /**
         * 构造函数4:包含“子Map”的构造函数
         * 即 构造出来的HashMap包含传入Map的映射关系
         * 加载因子 & 容量 = 默认
         */
    
        public HashMap(Map<? extends K, ? extends V> m) {
    
            // 设置容量大小 & 加载因子 = 默认
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                    DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
    
            // 该方法用于初始化 数组 & 阈值,下面会详细说明
            inflateTable(threshold);
    
            // 将传入的子Map中的全部元素逐个添加到HashMap中
            putAllForCreate(m);
        }
    }

    注:
    此处仅用于接收初始容量大小(capacity)、加载因子(Load factor),但仍无真正初始化哈希表,即初始化存储数组table
    此处先给出结论:真正初始化哈希表(初始化存储数组table)是在第1次添加键值对时,即第1次调用put()时。下面会详细说明
    至此,关于HashMap的构造函数讲解完毕。

    步骤2:向HashMap添加数据(成对 放入 键 - 值对)
    添加数据的流程如下
    注:为了让大家有个感性的认识,只是简单的画出存储流程,更加详细 & 具体的存储流程会在下面源码分析中给出

     

    源码分析

     /**
       * 函数使用原型
       */
       map.put("Android", 1);
            map.put("Java", 2);
            map.put("iOS", 3);
            map.put("数据挖掘", 4);
            map.put("产品经理", 5);
    
       /**
         * 源码分析:主要分析: HashMap的put函数
         */
        public V put(K key, V value)
    (分析1)// 1. 若 哈希表未初始化(即 table为空) 
            // 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table  
            if (table == EMPTY_TABLE) { 
            inflateTable(threshold); 
        }  
            // 2. 判断key是否为空值null
    (分析2)// 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
            // (本质:key = Null时,hash值 = 0,故存放到table[0]中)
            // 该位置永远只有1个value,新传进来的value会覆盖旧的value
            if (key == null)
                return putForNullKey(value);
    
    (分析3) // 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
            // a. 根据键值key计算hash值
            int hash = hash(key);
            // b. 根据hash值 最终获得 key对应存放的数组Table中位置
            int i = indexFor(hash, table.length);
    
            // 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
    (分析4)// 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue; //并返回旧的value
                }
            }
    
            modCount++;
    
    (分析5)// 3.2 若 该key不存在,则将“key-value”添加到table中
            addEntry(hash, key, value, i);
            return null;
        }

    根据源码分析所作出的流程图


    下面,我将根据上述流程的5个分析点进行详细讲解
    分析1:初始化哈希表
    即 初始化数组(table)、扩容阈值(threshold)

       /**
         * 函数使用原型
         */
          if (table == EMPTY_TABLE) { 
            inflateTable(threshold); 
        }  
    
       /**
         * 源码分析:inflateTable(threshold); 
         */
         private void inflateTable(int toSize) {  
        
        // 1. 将传入的容量大小转化为:>传入容量大小的最小的2的次幂
        // 即如果传入的是容量大小是19,那么转化后,初始化容量大小为32(即2的5次幂)
        int capacity = roundUpToPowerOf2(toSize);->>分析1   
    
        // 2. 重新计算阈值 threshold = 容量 * 加载因子  
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);  
    
        // 3. 使用计算后的初始容量(已经是2的次幂) 初始化数组table(作为数组长度)
        // 即 哈希表的容量大小 = 数组大小(长度)
        table = new Entry[capacity]; //用该容量初始化table  
    
        initHashSeedAsNeeded(capacity);  
    }  
    
        /**
         * 分析1:roundUpToPowerOf2(toSize)
         * 作用:将传入的容量大小转化为:>传入容量大小的最小的2的幂
         * 特别注意:容量大小必须为2的幂,该原因在下面的讲解会详细分析
         */
    
         private static int roundUpToPowerOf2(int number) {  
       
           //若 容量超过了最大值,初始化容量设置为最大值 ;否则,设置为:>传入容量大小的最小的2的次幂
           return number >= MAXIMUM_CAPACITY  ? 
                MAXIMUM_CAPACITY  : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;  

    再次强调:真正初始化哈希表(初始化存储数组table)是在第1次添加键值对时,即第1次调用put()时
    分析2:当 key ==null时,将该 key-value 的存储位置规定为数组table 中的第1个位置,即table [0]

       /**
         * 函数使用原型
         */
          if (key == null)
               return putForNullKey(value);
    
       /**
         * 源码分析:putForNullKey(value)
         */
          private V putForNullKey(V value) {  
            // 遍历以table[0]为首的链表,寻找是否存在key==null 对应的键值对
            // 1. 若有:则用新value 替换 旧value;同时返回旧的value值
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {  
              if (e.key == null) {   
                V oldValue = e.value;  
                e.value = value;  
                e.recordAccess(this);  
                return oldValue;  
            }  
        }  
        modCount++;  
    
        // 2 .若无key==null的键,那么调用addEntry(),将空键 & 对应的值封装到Entry中,并放到table[0]中
        addEntry(0, null, value, 0); 
        // 注:
        // a. addEntry()的第1个参数 = hash值 = 传入0
        // b. 即 说明:当key = null时,也有hash值 = 0,所以HashMap的key 可为null
        // c. 对比HashTable,由于HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
        // d. 此处只需知道是将 key-value 添加到HashMap中即可,关于addEntry()的源码分析将等到下面再详细说明,
        return null;  
    
    }     

    从此处可以看出:

    HashMap的键key 可为null(区别于 HashTable的key 不可为null)
    HashMap的键key 可为null且只能为1个,但值value可为null且为多个
    分析3:计算存放数组 table 中的位置(即 数组下标 or 索引)

       /**
         * 函数使用原型
         * 主要分为2步:计算hash值、根据hash值再计算得出最后数组位置
         */
            // a. 根据键值key计算hash值 ->> 分析1
            int hash = hash(key);
            // b. 根据hash值 最终获得 key对应存放的数组Table中位置 ->> 分析2
            int i = indexFor(hash, table.length);
    
       /**
         * 源码分析1:hash(key)
         * 该函数在JDK 1.7 和 1.8 中的实现不同,但原理一样 = 扰动函数 = 使得根据key生成的哈希码(hash值)分布更加均匀、更具备随机性,避免出现hash值冲突(即指不同key但生成同1个hash值)
         * JDK 1.7 做了9次扰动处理 = 4次位运算 + 5次异或运算
         * JDK 1.8 简化了扰动函数 = 只做了2次扰动 = 1次位运算 + 1次异或运算
         */
    
         // JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作  = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
         static final int hash(int h) {
            h ^= k.hashCode(); 
            h ^= (h >>> 20) ^ (h >>> 12);
            return h ^ (h >>> 7) ^ (h >>> 4);
         }
    
          // JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
          // 1. 取hashCode值: h = key.hashCode() 
         //  2. 高位参与低位的运算:h ^ (h >>> 16)  
          static final int hash(Object key) {
               int h;
                return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
                // a. 当key = null时,hash值 = 0,所以HashMap的key 可为null      
                // 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
                // b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
         }
    
       /**
         * 函数源码分析2:indexFor(hash, table.length)
         * JDK 1.8中实际上无该函数,但原理相同,即具备类似作用的函数
         */
          static int indexFor(int h, int length) {  
              return h & (length-1); 
              // 将对哈希码扰动处理后的结果 与运算(&) (数组长度-1),最终得到存储在数组table的位置(即数组下标、索引)
    }

    总结 计算存放在数组 table 中的位置(即数组下标、索引)的过程

    在了解 如何计算存放数组table 中的位置 后,所谓 知其然 而 需知其所以然,下面我将讲解为什么要这样计算,即主要解答以下3个问题:

    为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
    为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
    为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
    在回答这3个问题前,请大家记住一个核心思想:

    所有处理的根本目的,都是为了提高 存储key-value的数组下标位置 的随机性 & 分布均匀性,尽量避免出现hash值冲突。即:对于不同key,存储的数组下标位置要尽可能不一样

    问题1:为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
    结论:容易出现 哈希码 与 数组大小范围不匹配的情况,即 计算出来的哈希码可能 不在数组大小范围内,从而导致无法匹配存储位置
    原因描述


    为了解决 “哈希码与数组大小范围不匹配” 的问题,HashMap给出了解决方案:哈希码 与运算(&) (数组长度-1);请继续问题2
    问题2:为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
    结论:根据HashMap的容量大小(数组长度),按需取 哈希码一定数量的低位 作为存储的数组下标位置,从而 解决 “哈希码与数组大小范围不匹配” 的问题

    具体解决方案描述

     

    问题3:为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
    结论:加大哈希码低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性 & 均匀性,最终减少Hash冲突

    具体描述

     

    至此,关于怎么计算 key-value 值存储在HashMap数组位置 & 为什么要这么计算,讲解完毕。

    分析4:若对应的key已存在,则 使用 新value 替换 旧value
    注:当发生 Hash冲突时,为了保证 键key的唯一性哈希表并不会马上在链表中插入新数据,而是先查找该 key是否已存在,若已存在,则替换即可

       /**
         * 函数使用原型
         */
    // 2. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                // 2.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue; //并返回旧的value
                }
            }
    
            modCount++;
    
            // 2.2 若 该key不存在,则将“key-value”添加到table中
            addEntry(hash, key, value, i);
            return null;

    此处无复杂的源码分析,但此处的分析点主要有2个:替换流程 & key是否存在(即key值的对比)
    分析1:替换流程
    具体如下图:


    分析2:key值的比较
    采用 equals() 或 “==” 进行比较,下面给出其介绍 & 与 “==”使用的对比


    分析5:若对应的key不存在,则将该“key-value”添加到数组table的对应位置中
    函数源码分析如下

          /**
            * 函数使用原型
            */
           // 2. 判断该key对应的值是否已存在
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                // 2.1 若该key对应的值已存在,则用新的value取代旧的value
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this); 
                    return oldValue; 
                }
            }
    
            modCount++;
    
            // 2.2 若 该key对应的值不存在,则将“key-value”添加到table中
            addEntry(hash, key, value, i);
    
       /**
         * 源码分析:addEntry(hash, key, value, i)
         * 作用:添加键值对(Entry )到 HashMap中
         */
          void addEntry(int hash, K key, V value, int bucketIndex) {  
              // 参数3 = 插入数组table的索引位置 = 数组下标
              
              // 1. 插入前,先判断容量是否足够
              // 1.1 若不足够,则进行扩容(2倍)、重新计算Hash值、重新计算存储数组下标
              if ((size >= threshold) && (null != table[bucketIndex])) {  
                resize(2 * table.length); // a. 扩容2倍  --> 分析1
                hash = (null != key) ? hash(key) : 0;  // b. 重新计算该Key对应的hash值
                bucketIndex = indexFor(hash, table.length);  // c. 重新计算该Key对应的hash值的存储数组下标位置
        }  
    
        // 1.2 若容量足够,则创建1个新的数组元素(Entry) 并放入到数组中--> 分析2
        createEntry(hash, key, value, bucketIndex);  
    }  
    
     /**
       * 分析1:resize(2 * table.length)
       * 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
       */ 
       void resize(int newCapacity) {  
        
        // 1. 保存旧数组(old table) 
        Entry[] oldTable = table;  
    
        // 2. 保存旧容量(old capacity ),即数组长度
        int oldCapacity = oldTable.length; 
    
        // 3. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出    
        if (oldCapacity == MAXIMUM_CAPACITY) {  
            threshold = Integer.MAX_VALUE;  
            return;  
        }  
      
        // 4. 根据新容量(2倍容量)新建1个数组,即新table  
        Entry[] newTable = new Entry[newCapacity];  
    
        // 5. 将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1 
        transfer(newTable); 
    
        // 6. 新数组table引用到HashMap的table属性上
        table = newTable;  
    
        // 7. 重新设置阈值  
        threshold = (int)(newCapacity * loadFactor); 
    } 
    
     /**
       * 分析1.1:transfer(newTable); 
       * 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
       * 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
       */ 
    void transfer(Entry[] newTable) {
          // 1. src引用了旧数组
          Entry[] src = table; 
    
          // 2. 获取新数组的大小 = 获取新容量大小                 
          int newCapacity = newTable.length;
    
          // 3. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
          for (int j = 0; j < src.length; j++) { 
                // 3.1 取得旧数组的每个元素  
              Entry<K,V> e = src[j];           
              if (e != null) {
                  // 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
                  src[j] = null; 
    
                  do { 
                      // 3.3 遍历 以该数组元素为首 的链表
                      // 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
                      Entry<K,V> next = e.next; 
                     // 3.4 重新计算每个元素的存储位置
                     int i = indexFor(e.hash, newCapacity); 
                     // 3.5 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
                     // 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
                     e.next = newTable[i]; 
                     newTable[i] = e;  
                     // 3.6 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
                     e = next;             
                 } while (e != null);
                 // 如此不断循环,直到遍历完数组上的所有数据元素
             }
         }
     }
    
     /**
       * 分析2:createEntry(hash, key, value, bucketIndex);  
       * 作用: 若容量足够,则创建1个新的数组元素(Entry) 并放入到数组中
       */  
    void createEntry(int hash, K key, V value, int bucketIndex) { 
    
        // 1. 把table中该位置原来的Entry保存  
        Entry<K,V> e = table[bucketIndex];
    
        // 2. 在table中该位置新建一个Entry:将原头结点位置(数组上)的键值对 放入到(链表)后1个节点中、将需插入的键值对 放入到头结点中(数组上)-> 从而形成链表
        // 即 在插入元素时,是在链表头插入的,table中的每个位置永远只保存最新插入的Entry,旧的Entry则放入到链表中(即 解决Hash冲突)
        table[bucketIndex] = new Entry<>(hash, key, value, e);  
    
        // 3. 哈希表的键值对数量计数增加
        size++;  
    }   

    此处有2点需特别注意:键值对的添加方式 & 扩容机制

    1. 键值对的添加方式:单链表的头插法
    即 将该位置(数组上)原来的数据放在该位置的(链表)下1个节点中(next)、在该位置(数组上)放入需插入的数据-> 从而形成链表
    如下示意图


    2. 扩容机制
    具体流程如下:


    扩容过程中的转移数据示意图如下


    在扩容resize()过程中,在将旧数组上的数据 转移到 新数组上时,转移操作 = 按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况

    设重新计算存储位置后不变,即扩容前 = 1->2->3,扩容后 = 3->2->1

    此时若(多线程)并发执行 put()操作,一旦出现扩容情况,则 容易出现 环形链表,从而在获取数据、遍历链表时 形成死循环(Infinite Loop),即 死锁的状态 = 线程不安全
    下面最后1节会对上述情况详细说明

    总结
    向 HashMap 添加数据(成对 放入 键 - 值对)的全流程


    示意图

    至此,关于 “向 HashMap 添加数据(成对 放入 键 - 值对)“讲解完毕

    步骤3:从HashMap中获取数据
    假如理解了上述put()函数的原理,那么get()函数非常好理解,因为二者的过程原理几乎相同
    get()函数的流程如下:


    具体源码分析如下

    /**
       * 函数原型
       * 作用:根据键key,向HashMap获取对应的值
       */ 
       map.get(key);
    
    
     /**
       * 源码分析
       */ 
       public V get(Object key) {  
    
        // 1. 当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
        if (key == null)  
            return getForNullKey(); --> 分析1
    
        // 2. 当key ≠ null时,去获得对应值 -->分析2
        Entry<K,V> entry = getEntry(key);
      
        return null == entry ? null : entry.getValue();  
    }  
    
    
     /**
       * 分析1:getForNullKey()
       * 作用:当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
       */ 
    private V getForNullKey() {  
    
        if (size == 0) {  
            return null;  
        }  
    
        // 遍历以table[0]为头结点的链表,寻找 key==null 对应的值
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {  
    
            // 从table[0]中取key==null的value值 
            if (e.key == null)  
                return e.value; 
        }  
        return null;  
    }  
     
     /**
       * 分析2:getEntry(key)
       * 作用:当key ≠ null时,去获得对应值
       */  
    final Entry<K,V> getEntry(Object key) {  
    
        if (size == 0) {  
            return null;  
        }  
    
        // 1. 根据key值,通过hash()计算出对应的hash值
        int hash = (key == null) ? 0 : hash(key);  
    
        // 2. 根据hash值计算出对应的数组下标
        // 3. 遍历 以该数组下标的数组元素为头结点的链表所有节点,寻找该key对应的值
        for (Entry<K,V> e = table[indexFor(hash, table.length)];  e != null;  e = e.next) {  
    
            Object k;  
            // 若 hash值 & key 相等,则证明该Entry = 我们要的键值对
            // 通过equals()判断key是否相等
            if (e.hash == hash &&  
                ((k = e.key) == key || (key != null && key.equals(k))))  
                return e;  
        }  
        return null;  
    }  

    至此,关于 “向 HashMap 获取数据 “讲解完毕

    步骤4:对HashMap的其他操作
    即 对其余使用API(函数、方法)的源码分析

    HashMap除了核心的put()、get()函数,还有以下主要使用的函数方法

    void clear(); // 清除哈希表中的所有键值对
    int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
    boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空 
    
    void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
    V remove(Object key);  // 删除该键值对
    
    boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
    boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true
     

    下面将简单介绍上面几个函数的源码分析

      /**
       * 函数:isEmpty()
       * 作用:判断HashMap是否为空,即无键值对;size == 0时 表示为 空 
       */
    
    public boolean isEmpty() {  
        return size == 0;  
    } 
    
     /**
       * 函数:size()
       * 作用:返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
       */
    
       public int size() {  
        return size;  
    }  
    
     /**
       * 函数:clear()
       * 作用:清空哈希表,即删除所有键值对
       * 原理:将数组table中存储的Entry全部置为null、size置为0
       */ 
    public void clear() {  
        modCount++;  
        Arrays.fill(table, null);
        size = 0;
    }  
    
    /**
       * 函数:putAll(Map<? extends K, ? extends V> m)
       * 作用:将指定Map中的键值对 复制到 此Map中
       * 原理:类似Put函数
       */ 
    
        public void putAll(Map<? extends K, ? extends V> m) {  
        // 1. 统计需复制多少个键值对  
        int numKeysToBeAdded = m.size();  
        if (numKeysToBeAdded == 0)  
            return; 
    
        // 2. 若table还没初始化,先用刚刚统计的复制数去初始化table  
        if (table == EMPTY_TABLE) {  
            inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));  
        }  
      
        // 3. 若需复制的数目 > 阈值,则需先扩容 
        if (numKeysToBeAdded > threshold) {  
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);  
            if (targetCapacity > MAXIMUM_CAPACITY)  
                targetCapacity = MAXIMUM_CAPACITY;  
            int newCapacity = table.length;  
            while (newCapacity < targetCapacity)  
                newCapacity <<= 1;  
            if (newCapacity > table.length)  
                resize(newCapacity);  
        }  
        // 4. 开始复制(实际上不断调用Put函数插入)  
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())  
            put(e.getKey(), e.getValue());
    }  
    
     /**
       * 函数:remove(Object key)
       * 作用:删除该键值对
       */ 
    
    public V remove(Object key) {  
        Entry<K,V> e = removeEntryForKey(key);  
        return (e == null ? null : e.value);  
    }  
      
    final Entry<K,V> removeEntryForKey(Object key) {  
        if (size == 0) {  
            return null;  
        }  
        // 1. 计算hash值
        int hash = (key == null) ? 0 : hash(key);  
        // 2. 计算存储的数组下标位置
        int i = indexFor(hash, table.length);  
        Entry<K,V> prev = table[i];  
        Entry<K,V> e = prev;  
      
        while (e != null) {  
            Entry<K,V> next = e.next;  
            Object k;  
            if (e.hash == hash &&  
                ((k = e.key) == key || (key != null && key.equals(k)))) {  
                modCount++;  
                size--; 
                // 若删除的是table数组中的元素(即链表的头结点) 
                // 则删除操作 = 将头结点的next引用存入table[i]中  
                if (prev == e) 
                    table[i] = next;
    
                //否则 将以table[i]为头结点的链表中,当前Entry的前1个Entry中的next 设置为 当前Entry的next(即删除当前Entry = 直接跳过当前Entry)
                else  
                    prev.next = next;   
                e.recordRemoval(this);  
                return e;  
            }  
            prev = e;  
            e = next;  
        }  
      
        return e;  
    } 
    
     /**
       * 函数:containsKey(Object key)
       * 作用:判断是否存在该键的键值对;是 则返回true
       * 原理:调用get(),判断是否为Null
       */
       public boolean containsKey(Object key) {  
        return getEntry(key) != null; 
    } 
    
     /**
       * 函数:containsValue(Object value)
       * 作用:判断是否存在该值的键值对;是 则返回true
       */   
    public boolean containsValue(Object value) {  
        // 若value为空,则调用containsNullValue()  
        if (value == null)
            return containsNullValue();  
        
        // 若value不为空,则遍历链表中的每个Entry,通过equals()比较values 判断是否存在
        Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)  
            for (Entry e = tab[i] ; e != null ; e = e.next)  
                if (value.equals(e.value)) 
                    return true;//返回true  
        return false;  
    }  
      
    // value为空时调用的方法  
    private boolean containsNullValue() {  
        Entry[] tab = table;  
        for (int i = 0; i < tab.length ; i++)  
            for (Entry e = tab[i] ; e != null ; e = e.next)  
                if (e.value == null)
                    return true;  
        return false;  
    } 

    至此,关于HashMap的底层原理 & 主要使用API(函数、方法)讲解完毕。

    6. 源码总结
    下面,用3个图总结整个源码内容:

    总结内容 = 数据结构、主要参数、添加 & 查询数据流程、扩容机制

    数据结构 & 主要参数


    添加 & 查询数据流程


    扩容机制


    7. 与 JDK 1.8的区别
    HashMap 的实现在 JDK 1.7 和 JDK 1.8 差别较大,具体区别如下

    JDK 1.8 的优化目的主要是:减少 Hash冲突 & 提高哈希表的存、取效率;关于 JDK 1.8 中 HashMap 的源码解析请看文章:Java源码分析:关于 HashMap 1.8 的重大更新

    7.1 数据结构


    7.2 获取数据时(获取数据 类似)


    7.3 扩容机制


    8. 额外补充:关于HashMap的其他问题
    有几个小问题需要在此补充


    具体如下
    8.1 哈希表如何解决Hash冲突


    8.2 为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化
    具体解答如下


    下面主要讲解 HashMap 线程不安全的其中一个重要原因:多线程下容易出现resize()死循环
    本质 = 并发 执行 put()操作导致触发 扩容行为,从而导致 环形链表,使得在获取数据遍历链表时形成死循环,即Infinite Loop

    先看扩容的源码分析resize()

    关于resize()的源码分析已在上文详细分析,此处仅作重点分析:transfer()

    /**
       * 源码分析:resize(2 * table.length)
       * 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
       */ 
       void resize(int newCapacity) {  
        
        // 1. 保存旧数组(old table) 
        Entry[] oldTable = table;  
    
        // 2. 保存旧容量(old capacity ),即数组长度
        int oldCapacity = oldTable.length; 
    
        // 3. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出    
        if (oldCapacity == MAXIMUM_CAPACITY) {  
            threshold = Integer.MAX_VALUE;  
            return;  
        }  
      
        // 4. 根据新容量(2倍容量)新建1个数组,即新table  
        Entry[] newTable = new Entry[newCapacity];  
    
        // 5. (重点分析)将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1 
        transfer(newTable); 
    
        // 6. 新数组table引用到HashMap的table属性上
        table = newTable;  
    
        // 7. 重新设置阈值  
        threshold = (int)(newCapacity * loadFactor); 
    } 
    
     /**
       * 分析1.1:transfer(newTable); 
       * 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
       * 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
       */ 
    void transfer(Entry[] newTable) {
          // 1. src引用了旧数组
          Entry[] src = table; 
    
          // 2. 获取新数组的大小 = 获取新容量大小                 
          int newCapacity = newTable.length;
    
          // 3. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
          for (int j = 0; j < src.length; j++) { 
              // 3.1 取得旧数组的每个元素  
              Entry<K,V> e = src[j];           
              if (e != null) {
                  // 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
                  src[j] = null; 
    
                  do { 
                      // 3.3 遍历 以该数组元素为首 的链表
                      // 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
                      Entry<K,V> next = e.next; 
                     // 3.3 重新计算每个元素的存储位置
                     int i = indexFor(e.hash, newCapacity); 
                     // 3.4 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
                     // 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
                     e.next = newTable[i]; 
                     newTable[i] = e;  
                     // 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
                     e = next;             
                 } while (e != null);
                 // 如此不断循环,直到遍历完数组上的所有数据元素
             }
         }
     }

    从上面可看出:在扩容resize()过程中,在将旧数组上的数据 转移到 新数组上时,转移数据操作 = 按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况

    设重新计算存储位置后不变,即扩容前 = 1->2->3,扩容后 = 3->2->1

    此时若(多线程)并发执行 put()操作,一旦出现扩容情况,则 容易出现 环形链表,从而在获取数据、遍历链表时 形成死循环(Infinite Loop),即 死锁的状态,具体请看下图:
    初始状态、步骤1、步骤2

     

     

     

    注:由于 JDK 1.8 转移数据操作 = 按旧链表的正序遍历链表、在新链表的尾部依次插入,所以不会出现链表 逆序、倒置的情况,故不容易出现环形链表的情况。

    但 JDK 1.8 还是线程不安全,因为 无加同步锁保护

    8.3 为什么 HashMap 中 String、Integer 这样的包装类适合作为 key 键


    8.4 HashMap 中的 key若 Object类型, 则需实现哪些方法?


    至此,关于HashMap的所有知识讲解完毕。
    ————————————————
    版权声明:本文为CSDN博主「Carson_Ho」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/carson_ho/article/details/79373026

  • 相关阅读:
    hdu 1199 Color the Ball 离散线段树
    poj 2623 Sequence Median 堆的灵活运用
    hdu 2251 Dungeon Master bfs
    HDU 1166 敌兵布阵 线段树
    UVALive 4426 Blast the Enemy! 计算几何求重心
    UVALive 4425 Another Brick in the Wall 暴力
    UVALive 4423 String LD 暴力
    UVALive 4872 Underground Cables 最小生成树
    UVALive 4870 Roller Coaster 01背包
    UVALive 4869 Profits DP
  • 原文地址:https://www.cnblogs.com/lusaisai/p/12687599.html
Copyright © 2020-2023  润新知