• 线性化近似


    1 一阶线性近似

        函数 f(x) 的一阶导数为 ,使用较小变化量代替微分量得  ,令 

        进一步整理得 ,当已知 ,则可以求解  的一阶近似解为 y。

    2 求解近似解

        1)函数 ,求解 f(11) ?

              已知 f(9) = 3,使用线性近似得 

        2)函数 ,求解 f(.99) ?

              已知 f(1) = 0,使用线性近似得 

     3 常用函数的一阶近似(x 在 0 附近)

        

        

        

        

        

     4 一阶线性近似误差

        原函数使用泰勒级数展开为 

        误差函数可表示为 

         由于   远大于 ,误差函数可近似表达为 

         当  时,线性近似值低于真实值;当  时,线性近似值高于真实值。

    5 雅可比矩阵

       当函数输入输出变量均为向量时,已知 ,求解  附近  的线性近似值?

       类似的,有 ,其中  表示函数  在  处的一阶偏导构成的矩阵,即为雅可比矩阵。

       令 ,函数   可改写方程组 

       分别求解方程组中每一个函数的一阶近似为 

       整理成矩阵形式为  

        附近  的线性近似值可表示为 

    6 牛顿法求解方程

       给定方程 f(x) = 0,由于并不是每一个方程都可以轻松求解准确解,可以使用牛顿法求解近似解。方法如下:

       1)找到一个猜测解,记录为 ,给出该点处线性方程为 

       2)寻找线性方程在 X 轴上交点位置 ,一般情况下,该交点位置是方程 f(x) = 0 的一个更好的近似解;

       3)重复 2)直到  足够接近 0 为止。

       牛顿法并不一定能够迭代出足够精确的解,当第一个猜测解位置较远时,可能无法得到一个正确的解。猜测解的主要原则是猜测解与真实解区间的一阶导数符号一致,且比较接近。

       以下某些情形,可能导致牛顿法失效,主要包括:

       1) 接近 0,迭代过程   使得  无限远离 

       2)f(x) = 0 存在多个解,使得收敛解与期望解不一致;

       3)其他一些无限循环情况;

       总之,在迭代过程中需要判断迭代解收敛情况,根据收敛情况判断是否可以通过牛顿法寻找近似解。

    7 高阶近似

       使用一阶线性近似时,其误差值为 ,为了得到一个更加精确的近似值,可以使用二阶近似,公式如下:

       ,其近似误差为 

       令 , 

        一阶近似可表示为 , 对函数求导数得  ,由于 ,得 

        二阶近似可表示为 ,对函数求二阶导数得 ,由于 ,得 

        同理,可以求得N阶近似各项系数为 

       参考资料 The Calculus Lifesaver  Adrian Banner

  • 相关阅读:
    SPOJ 1812 LCS2 后缀自动机
    [APIO2014]回文串 后缀自动机_Manancher_倍增
    SPOJ8222 NSUBSTR
    [HAOI2016]找相同字符 广义后缀自动机_统计出现次数
    洛谷 P3804 【模板】后缀自动机 统计单词出现次数
    洛谷 P1368 工艺 后缀自动机 求最小表示
    力扣题目汇总(反转字符串中的单词,EXCEL表列序号,旋置矩阵)
    力扣题目汇总(重复N次元素,反转字符串,斐波那契数)
    力扣题目汇总(机器人返回原点,按奇偶排序,数字的补数)
    博客园美化的第二天(动态设置,以及结合ps制作)
  • 原文地址:https://www.cnblogs.com/luofeiju/p/14239790.html
Copyright © 2020-2023  润新知