• 数据结构与算法之美学习笔记:第二十三讲


    一、课前思考

    前面我们讲的都是线性表结构,栈、队列等等。今天我们讲一种非线性表结构,树。树这种数据结构牛逼线性表的数据结构要复杂得多,内容也比较多,所以我会分四节来讲解。

    我反复强调过,带着问题学习,是最有效的学习方式之一,所以在正式的内容开始之前,我还是给你出几道思考题:二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?
    带着这些问题,我们就来学习今天的内容,树!

    二、树

    1、一些节本概念

    图中画了几棵“树”。你来看看,这些“树”都有什么特征?

     

    你有没有发现,“树”这种数据结构真的很像我们现实生活中的“树”,这里面每个元素我们叫作“节点”;用来连线相邻节点之间的关系,我们叫作“父子关系”。

    比如下面这幅图:

    1. A节点就是B节点的父节点,B节点是A节点的子节点
    2. B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点
    3. 我们把没有父节点的节点叫作根节点,也就是图中的节点E。
    4. 我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

     

    2、高度深度和层

    除此之外,关于“树”,还有三个比较相似的概念:高度(Height)、深度(Depth)、层(Level)。它们的定义是这样的:

    这三个概念的定义比较容易混淆,描述起来也比较空洞。我举个例子说明一下,你一看应该就能明白。

    记这住个概念,我还有一个小窍们,就是类比“高度”“深度”“层”这三个名词在生活中的含义。

    1. 在我们的生活中,“高度”这个概念,其实就是从下往上度量,比如我们要度量第10层楼的高度、第13层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是0。
    2. “深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是0。
    3. “层数”跟深度的计算类似,不过,计数起点是1,也就是说根节点的位于第1层。

    三、二叉树

    1、二叉树的分类

    树结构多种多样,不过我们最常树还是二叉树。

    二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个两节点,有的节点只有左子节点,有的节点只有右子节点。
    我画的这一个都是满叉树。以此类推,你可以想象一下四叉树、八叉树长什么样子。

    这个图⾥⾯,有两个比较特殊的二叉树,分别是编号2和编号3这两个

    • 其中,编号2的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树
    • 编号3的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最⼤,这种二叉树叫作完全二叉树

    2、完全二叉树和非完全二叉树的区别

    满二叉树很好理解,也很好识别,但是完全二叉树,有的人可能就分不清了。我画了一个完全二叉树和非完全二叉树的例子,你可以对比着看看。

    你可能会说,满二叉树的特征非常明显,我们把它单独拎出来讲,这个可以理解。但是完全二叉树的特征不怎么明显啊,单从长相上来看,完全二叉树并没有特别特殊的地方啊,
    更像是“芸芸众树”中的一种。

    3、为什么还要把完全儿茶特意把它拎出来讲呢?

    那我们为什么还要特意把它拎出来讲呢?为什么偏偏把最后一层的叶子节点靠左排列的叫完全二叉树?如果靠右排列就不能叫完全二叉树了吗?这个定义的由来或者说目的在哪里?

    要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树?

    如何表示一棵二叉树?

    想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。

    我们先来看比较简单、直观的链式存储法。从图中你应该可以很清楚地看到,

    • 每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。
    • 我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。
    • 这种存储方式我们比较常见。大部分二叉树代码都是通过这种结构来实现的。

    我们再来看,基于数组的顺序存储法。

    • 我们把根节点存储在下标i = 1的位置
    • 那左子节点存储在下标2 * i = 2的位置,
    • 右⼦节点存储在2 * i + 1 = 3的位置。
    • 以此类推,B节点的左⼦节点存储在2 * i = 2 * 2 = 4的位置,右⼦节点存储在2 * i + 1 = 2 * 2 +1 = 5的位置。

    我来总结一下,如果节点X存储在数组中下标为i的位置:

    • 下标为2 * i 的位置存储的就是左子节点,
    • 下标为2 * i + 1的位置存储的就是右子节点。
    • 反过来,下标为i/2的位置存储就是它的根节点。
    • 通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),
    • 这样就可以通过下标计算,把整棵树都串起来。

    不过,我刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。你可以看我举的下面这个例子。

    所以,如果某棵而叉树是一棵完全全叉树,那么数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。
    这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

    当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常见的存储方式就是数组。

    四、二叉树的遍历

    前面我讲了二叉树的基本定义和存储方法,现在我们来看二叉树中非常重要的操作,二叉树的遍历。这也是非常常见的面试题。

    1、如何将所有节点都遍历打印出来呢?经典的方法有三种,

    • 前序遍历
    • 中序遍历
    • 后序遍历

    其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。

    • 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
    • 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
    • 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。

    实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。

    2、前、中、后序遍历的递推公式

    写递归代码的关键,就是看能不能写出递推公式,二写递推公式的关键就是,如果要解决问题A,就假设子问题B、C已经解决,然后再来看如何利用B、C来解决A。
    所以,我们可以把前、中、后序遍历的递推公式都写出来。

    前序遍历的递推公式:
    preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)
    
    中序遍历的递推公式:
    inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)
    
    后序遍历的递推公式:
    postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r

    有了递推公式,代码写起来就简单多了。这三种遍历方式的代码,我都写出来了,你可以看看。

    void preOrder(Node* root) {
      if (root == null) return;
      print root // 此处为伪代码,表示打印root节点
      preOrder(root->left);
      preOrder(root->right);
    }
    
    void inOrder(Node* root) {
      if (root == null) return;
      inOrder(root->left);
      print root // 此处为伪代码,表示打印root节点
      inOrder(root->right);
    }
    
    void postOrder(Node* root) {
      if (root == null) return;
      postOrder(root->left);
      postOrder(root->right);
      print root // 此处为伪代码,表示打印root节点
    }

    二叉树的前、中、后序遍历的递归实现是不是很简单?你知道二叉树遍历的时间复杂度是多少吗?我们一起来看看。

    从我前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,
    也就是说二叉树遍历的时间复杂度是O(n)。

    五、解答开篇 && 内容小结

    今天,我讲了一种非线性表数据结构,树。关于树,有一个比较常用的概念你需要掌握,那就是:根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度、层数,以及树的高度。

    我们平时最常见的树就是二叉树。二叉树的每个节点最多有两个子节点,分别是左子节点和右子节点。二叉树中,有两种比较特殊的树,分别是满二叉树和完全二叉树。
    满二叉树就是完全二叉树的一种特殊情况。

    二叉树既可以用链式存储,也可以用数组顺序存储。数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。除此之外,二叉树非常重要的操作就是前、
    中、后序遍历操作,遍历的时间复杂度是O(n),你需要理解并能写递归代码来实现。

    六、课后思考题

    1、给定一组数据,⽐如1,3,5,6,9,10。你来算算,可以构建出多少种不同的二叉树?

    经典留言meng
    关于问题1,如果是完全二叉树,老师说过可以放在数组里面,那么问题是否 可以简化为数组内的元素有多少种组合方式,这样的话,就是 n!,不知是否可以这样理解 ?

    2. 我们讲了三种二叉树的遍历方式,前、中、后序。实际上,还有另外一种遍历方式,也就是按层遍历,你知道如何实现吗?

    经典留言Jerry银银
    层序遍历,借用队列辅助即可,根节点先入队列,然后循环从队列中pop节点,将pop出来的节点的左子节点先入队列,右节点后入队列,依次循环,直到队列为空,遍历结束。
  • 相关阅读:
    从自然数到有理数
    付费版乐影音下载器使用方法
    Avtiviti之流程变量
    activity(工作流)初步学习记录
    IntelliJ IDEA安装Activiti插件并使用
    golang 性能测试
    Golang性能测试工具PProf应用详解
    java连接ZK的基本操作
    会员体系、积分、等级
    Flink基本概念
  • 原文地址:https://www.cnblogs.com/luoahong/p/11881209.html
Copyright © 2020-2023  润新知