先说勾股数:
勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)
勾股数规律:
首先是奇数组口诀:平方后拆成连续两个数。
其次是偶数组口诀:平方的一半再拆成差2的两个数。
我们深挖一下口诀
定理: 如a2+b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;
1.直角三角形a2+b2=c2奇数列a法则:
若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:
a=2n+1b=n2+(n+1)2−1c=n2+(n+1)2
证明:
由勾股弦定理,若abc为直角三角形三边整数时必有a2+b2=c2关系成立。现将奇数列a法则条件代入勾股弦定理得到下式:(2n+1)2+(n2+(n+1)2−1)2=(n2+(n+1)2)2
化简后得到:4n4+8n3+8n2+4n+1=4n4+8n3+8n2+4n+1即等式关系成立;由法则条件分别取n=1、2、3…时得到了:32+42=5252+122=13272+242=25292+402=412112+602=612132+842=852故得到奇数列a法则成立
2.直角三角形a2+b2=c2的偶数列a法则:
若a表为2n型偶数(n=2、3、4…), 则a为偶数列平方整数解的关系是:
a=2nb=n2−1c=n2+1
证明:
由勾股弦定理,若abc为直角三角形三边整数时必有a2+b2=c2关系成立.现将偶数列a法则条件代入勾股弦定理得到下式:(2n)2+(n2−1)2=(n2+1)2化简后得到:n4+2n2+1=n4+2n2+1即等式关系成立;(这里需要说明,当取n=1时,有b=n2–1=1−1=0,此时失去三角形意义,故只能取n=2、3、4…)由法则条件分别取n=2、3、4…时得到了:42+32=5262+82=10282+152=172102+242=262122+352=372142+482=502故得到偶数列a关系成立