• 数学公式集


    Mathematical Formula

    1. Taylor expansion

      [g(x) = g(x_0) + sum_{k = 1}^{n}frac{f^k(x-x_0)^k}{k!}(x-x_0)^k + R_n(x) ]

      (R_n(x)) refers to the Lagrange remainder, which is

      [R_n(x) = frac{f^{n+1}(xi)}{(n+1)!}(x-x_0)^{n+1} ]

      Lagrange remainder is derived from Cauchy mean value theorem.

    2. Cauchy mean value theorem

      Between a and b always exits a (xiin(a,b)) to make

      [frac{f(b) - f(a)}{g(b) - g(b)} = frac{f^{'}(xi)}{g^{'}(xi)} ]

      true.

    3. Why all the functions represent to the sum of the odd and even functions?

      For a regular function (f(x))

      [f(x) = frac{f(x) + f(-x)}{2} + frac{f(x)-f(-x)}{2} ]

      even function on the left and odd function on the right.

    4. A method for solving first order nonlinear differential equations.

      For a regular first order nonlinear differential equation

      [frac{dy}{dx} + P(x)y = Q(x) ag{1} ]

      Let (y = ucdot v), (u) and (v) are all functions about (x), so we get

      [frac{dy}{dx} = vfrac{du}{dx} + ufrac{dv}{dx} ]

      Then the differential equation become

      [frac{du}{dx}cdot v + ucdotleft(frac{dv}{dx} + P(x)cdot v ight) = Q(x) ag{2} ]

      We want solve the (v) to make the formula inside the parenthesis to be zero, that is

      [frac{dv}{dx} + P(x)cdot v = 0 ]

      This is a first order linear differential equation, it's general solution is

      [v = C_1e^{-int P(x)dx} ag{3} ]

      Let's substitute v into the formula (2), we get

      [frac{du}{dx}cdot C_1e^{-int P(x)dx} = Q(x) ag{4} ]

      This is a linear differential equation, we can easily solve it, the general solution of (u) is

      [u = frac1{C_1}int Q(x)cdot e^{int P(x)dx}dx + C_2 ]

      So our target (y) is

      [y = ucdot v = left[int e^{(int P(x)dx)}cdot Q(x)cdot dx + C ight]cdot e^{(-int P(x)dx)} ]

    我愿潇洒如鹰,远离地上宿命
  • 相关阅读:
    澳门两日游之续一
    记澳门两日游0516
    [原创]北大ACM POJ 1050题解
    [原创]百度之星低频词过滤题解
    [原创]百度之星题解之重叠区间大小
    澳门两日游之续三
    澳门两日游之续二
    [原创]LZW网页判重的题解
    [原创]北大ACM POJ 1032题解
    创建产品列表控件时触发自定义DataUpated事件时,设置MultiView.ActiveViewIndex无效
  • 原文地址:https://www.cnblogs.com/lunar-ubuntu/p/12896651.html
Copyright © 2020-2023  润新知