Haystack的介绍和使用
一,什么是Haystack
搜索是一个日益重要的话题。用户越来越依赖于搜索从噪声信息中分离和快速找到有用信息。此外,搜索搜索可以洞察那些东西是受欢迎的,改善网站上难以查找的东西。
为此,Haystack试图整合自定义搜索,使其尽可能简单的灵活和强大到足以处理更高级的用例。haystack支持多种搜索引擎,不仅仅是whoosh,使用solr、elastic search等搜索,也可通过haystack,而且直接切换引擎即可,甚至无需修改搜索代码。
二,安装相关的包
pip install django-haystack
pip install whoosh
pip install jieba
三,配置
1:将Haystack添加到settings.py中的INSTALLED_APPS中:
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
# 添加
'haystack',
# 你的app
'blog',
]
2:在你的settings.py中添加一个设置来指示站点配置文件正在使用的后端,以及其他的后端设置。
Solr:
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.solr_backend.SolrEngine',
'URL': 'http://127.0.0.1:8983/solr'
# ...or for multicore...
# 'URL': 'http://127.0.0.1:8983/solr/mysite',
},
}
Elasticsearch:
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
'URL': 'http://127.0.0.1:9200/',
'INDEX_NAME': 'haystack',
},
}
Whoosh:
#需要设置PATH到你的Whoosh索引的文件系统位置
import os
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
'PATH': os.path.join(os.path.dirname(__file__), 'whoosh_index'),
},
}
# 自动更新索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
Xapian:
#首先安装Xapian后端(http://github.com/notanumber/xapian-haystack/tree/master)
#需要设置PATH到你的Xapian索引的文件系统位置。
import os
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'xapian_backend.XapianEngine',
'PATH': os.path.join(os.path.dirname(__file__), 'xapian_index'),
},
}
下面我们以whoosh为例进行操作。
四:配置路由
在整个项目的urls.py中,配置搜索功能的url路径
urlpatterns = [
...
url(r'^search/', include('haystack.urls')),
]
五,创建索引
在你的应用目录下面新建一个search_indexes.py文件,文件名不能修改!
from haystack import indexes
from app01.models import Article
class ArticleIndex(indexes.SearchIndex, indexes.Indexable):
#类名必须为需要检索的Model_name+Index,这里需要检索Article,所以创建ArticleIndex
text = indexes.CharField(document=True, use_template=True)#创建一个text字段
#其它字段
desc = indexes.CharField(model_attr='desc')
content = indexes.CharField(model_attr='content')
def get_model(self):#重载get_model方法,必须要有!
return Article
def index_queryset(self, using=None):
return self.get_model().objects.all()
ps:为什么要创建索引呢,索引就像一本书的目录,可以为读者提供更快速的导航与查找。在这里也是同样的道理,当数据量非常大的时候,若要从这些数据里找出所有满足搜索条件的几乎是不太可能的事情,将会给服务器带来极大的负担,所以我们需要为指定的数据添加一个索引。索引实现的细节并不是我们需要关心的事情,但是它为哪些字段创建索引,怎么指定,下面来说明:每个索引里面必须有且只能有一个字段为 document=Ture,这代表着haystack和搜索引擎将使用此字段的内容作为索引进行检索(primary field)其他的字段只是附属的属性,方便调用,并不做检索的依据。
注意:如果一个字段设置了document=True,则一般约定此字段名为text,这是ArticleIndex类里面一贯的写法。
另外,我们在text字段上提供了use_template=Ture。这允许我们使用一个数据模板,来构建文档搜索引擎索引。你应该在模板目录下建立,也就是在templates文件夹中建立一个新的模板,search/indexes/项目名/模型名_text.txt,并且将以下的内容放入txt文件中:
#在目录“templates/search/indexes/应用名称/”下创建“模型类名称_text.txt”文件
{{ object.title }}
{{ object.desc }}
{{ object.content }}
这个数据模板的作用就是对
六:编辑搜索模板
搜索模板默认在search/search.html中,下面的代码足以让你搜索运行:
<!DOCTYPE html>
<html>
<head>
<title></title>
<style>
span.highlighted {
color: red;
}
</style>
</head>
<body>
{% load highlight %}
{% if query %}
<h3>搜索结果如下:</h3>
{% for result in page.object_list %}
{# <a href="/{{ result.object.id }}/">{{ result.object.title }}</a><br/>#}
<a href="/{{ result.object.id }}/">{% highlight result.object.title with query max_length 2%}</a><br/>
<p>{{ result.object.content|safe }}</p>
<p>{% highlight result.content with query %}</p>
{% empty %}
<p>啥也没找到</p>
{% endfor %}
{% if page.has_previous or page.has_next %}
<div>
{% if page.has_previous %}
<a href="?q={{ query }}&page={{ page.previous_page_number }}">{% endif %}« 上一页
{% if page.has_previous %}</a>{% endif %}
|
{% if page.has_next %}<a href="?q={{ query }}&page={{ page.next_page_number }}">{% endif %}下一页 »
{% if page.has_next %}</a>{% endif %}
</div>
{% endif %}
{% endif %}
</body>
</html>
注意:page.object_list实际上是SearchResult对象的列表。这些对象返回索引的所有数据。他们可以通过{{ result.object }}来访问,
七,重建索引
配置完成之后,接下应该把数据库中的数据放入索引。Haystack中自带了一个命令工具:
python manage.py rebuild_index
八,使用jieba分词
新建一个ChineseAnalyzer.py文件:
import jieba
from whoosh.analysis import Tokenizer, Token
class ChineseTokenizer(Tokenizer):
def __call__(self, value, positions=False, chars=False,
keeporiginal=False, removestops=True,
start_pos=0, start_char=0, mode='', **kwargs):
t = Token(positions, chars, removestops=removestops, mode=mode,
**kwargs)
seglist = jieba.cut(value, cut_all=True)
for w in seglist:
t.original = t.text = w
t.boost = 1.0
if positions:
t.pos = start_pos + value.find(w)
if chars:
t.startchar = start_char + value.find(w)
t.endchar = start_char + value.find(w) + len(w)
yield t
def ChineseAnalyzer():
return ChineseTokenizer()
保存在python安装路径的backends文件夹中(例如:D:python3Libsite-packageshaystackackends)然后在该文件夹中找到一个whoosh_backend.py文件,改名为whoosh_cn_backend.py
在内部添加:
from .ChineseAnalyzer import ChineseAnalyzer
然后查找到这行代码:
analyzer=StemmingAnalyzer()
修改为:
analyzer=ChineseAnalyzer()
九,在模板找中创建搜索栏:
<form method='get' action="/search/" target="_blank">
<input type="text" name="q">
<input type="submit" value="查询">
</form>