• 图解机器学习读书笔记-CH5


    稀疏学习

    带约束的LS+交叉验证组合是非常有效的回归方法, 缺点是参数太多时求解耗时.

    稀疏学习将大部分参数置0, 大大加速参数求解.

    L1约束的LS

    稀疏学习使用L1条件约束:
    其中,

    L1和L2对比:

    以对于参数的线性模型为例对上图做分析:

    • 训练误差(J_{LS})是关于( heta)的向下的二次凸函数, 因此(J_{LS})在参数空间内有椭圆状等高线, 底部是最小二乘解(hat heta_{LS})
    • (hat heta_{L_2CLS}):椭圆等高线和圆周交点是L2约束LS的解(hat heta_{LS}), 即(L_2)-Constrained Least Squares
    • (hat heta_{L_1CLS}):椭圆等高线和菱形的角的焦点是L1约束LS的解(hat heta), L1约束LS的解一定位于参数的轴

    L1CLS的解在参数轴上, 很容易用稀疏的方式求解.

    L1约束的LS求解

    利用拉格朗日对偶问题求解, 考虑L1正则化的最优化问题:

    [underset{ heta}{min}J( heta), J( heta) = J_{LS}( heta) + lambda| heta|_1 ]

    L1范数原点不能微分, 用微分的二次函数控制:

    [| heta_j| <= frac{ heta_j^2}{2c_j}+frac{c_j}{2}, forall c_j > 0 ]

    函数如图:

    L2正则化LS一般表达式:

    线性模型(f_ heta(vec x) = vec heta^Tphi(vec x))(hat heta):

    几个解的函数图像:

    高斯核模型

    分别用L1,L2约束求解:

    求解结果:

    结论: 结果无太大差异, 但L2约束的LS的50个参数全部非0; L1约束LS的50个参数, 有37个为0, 学习结果是是13个核函数的线性拟合.

    Lp约束的LS

    L1,L2范数的更广义定义, (L_p)范数:

    (p=infty)时称最大值范数:

    (p=0时L_0)范数表示非零向量元素个数:

    (L_p)范数的单位球(R=1):

    分析:

    [egin{cases} p leq 1& 坐标轴上呈现有峰值的尖形 \ p geq 1& 凸形 end{cases} ]

    稀疏解存在的特殊条件:

    [egin{cases} 1.约束空间为凸形(非凸优化困难)\ 2.坐标轴上呈现有峰值的尖形 end{cases} ]

    如此, 只有(L_1)范数满足条件, L1约束的LS是非常特殊的学习方法

    满足(L_p)范数约束条件的空间性质:

    L1+L2约束的LS

    (L1+L2)约束的LS也称为弹性网络

    先回顾两个模型.

    1. 线性模型


      (phi_j(x))是基函数向量, 基函数举例:

    2. 核模型

      高斯核函数:

    回顾(L_1和L_2)约束:

    1. (L_2)约束

      转化为拉格朗日对偶问题:

      不考虑参数空间圆的半径R时化简为:

    2. (L_1)约束:

      转化为拉格朗日对偶问题:

    3. (L_1和L_2)的参数空间:

    L1约束的限制:

    1. 参数b比训练样本n多时, 线性模型可选择的最大特征数被局限为n
    2. 线性模型中形成集群构造(有多个基函数相似的集合)时, (L_1)LS选择一个忽略其它, 核模型输入样本是构造是更易形成集群构造
    3. 参数b比样本n少时, (L_1)的通用性比(L_2)更差

    解决方案是(L_1+L_2):

    (L_p)范数单位球:

    ( au=1/2时, L_1+L_2)范数的单位球:

    结论:

    1. (L_1+L_2)单位球凸, 角部呈尖形, 故和(L_1)一样易求得稀疏解
    2. 可学得n个以上非零参数
    3. 基函数为集合构造时, 常以集合为单位对基函数选择
    4. (L_1)约束的LS具有更高的精度
  • 相关阅读:
    06.04 html
    汉企第一天
    Django之ajax
    Diango之图书管理系统编辑
    Django之模型层&ORM操作
    Django 之模板层
    Django之 路由层
    Django之ORM简单操作(一)
    迭代器、可迭代对象、迭代器对象、生成器、生成器对象、枚举对象
    装饰器
  • 原文地址:https://www.cnblogs.com/lucius/p/9441118.html
Copyright © 2020-2023  润新知