dp
注意没有声明S不空,处理一下
o(n^2)
class Solution { public: string longestPalindrome(string s) { if (s.empty()) return ""; int len=s.length(); int dp[len][len]; for(int i=0;i<len;i++) for(int k=0;k<len;k++) dp[i][k]=0; int start=0,end=0; for (int i=0;i<len;i++) { dp[i][i]=1; if((i<len-1)&&(s[i]==s[i+1])){ dp[i][i+1]=1; start=i; end=i+1; } } for(int dis=2;dis<len;dis++) // i-> I-1,I+1,所以处理不了两个连续 { for(int i=0;(i+dis)<len;i++) if((dp[i+1][i+dis-1]==1)&&(s[i]==s[i+dis])) { dp[i][i+dis]=1; if((dis)>(end-start)){ start=i; end=i+dis; } } } return s.substr(start,end-start+1); } };
遇到的问题:
== 写成了= 。。。。。
然后dp数组没有先mem为0...
然后是Manacher法
参考https://www.cnblogs.com/mini-coconut/p/9074315.html
首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,
具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:
(1)Len数组简介与性质
Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。
对于上面的例子,可以得出Len[i]数组为:
Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,
证明,
首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。
有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。
(2)Len数组的计算
首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。
设P为之前计算中最长回文子串的右端点,并且设取得这个最大值的位置为po,分两种情况:
第一种情况:i<=P
那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:
那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,
由回文串的定义可知,一个回文串反过来还是一个回文串,
所以以i为中心的回文串的长度至少和以j为中心的回文串一样(因为j,i及其附近点关于P对称,j所在回文串对称过去),即Len[i]>=Len[j]。
因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。
如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。
第二种情况: i>P
如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。
2.时间复杂度分析
Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。
下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。、