#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 50 + 5;
const int INF = 1000000000;
struct Edge {
int from, to, cap, flow;
Edge(int u, int v, int c, int f):from(u),to(v),cap(c),flow(f) {}
};
struct EdmondsKarp {
int n, m;
vector<Edge> edges; // 边数的两倍
vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
int a[maxn]; // 当起点到i的可改进量
int p[maxn]; // 最短路树上p的入弧编号
void init(int n) {
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
int Maxflow(int s, int t) {
int flow = 0;
for(;;) {
memset(a, 0, sizeof(a));
queue<int> Q;
Q.push(s);
a[s] = INF;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!a[e.to] && e.cap > e.flow) {
p[e.to] = G[x][i];
a[e.to] = min(a[x], e.cap-e.flow);
Q.push(e.to);
}
}
if(a[t]) break;
}
if(!a[t]) break;
for(int u = t; u != s; u = edges[p[u]].from) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
}
flow += a[t];
}
return flow;
}
};
EdmondsKarp g;
int no[maxn][maxn];
int main() {
int T, R, C, v, kase = 0;
scanf("%d", &T);
for(int kase = 1; kase <= T; kase++) {
scanf("%d%d", &R, &C);
g.init(R+C+2); //初始化 注意R+C+2
int last = 0;
for(int i = 1; i <= R; i++) {
scanf("%d", &v);
g.AddEdge(0, i, v - last - C); // row sum is v - last //S到行Ai
last = v;
}
last = 0;
for(int i = 1; i <= C; i++) {
scanf("%d", &v);
g.AddEdge(R+i, R+C+1, v - last - R); // col sum is v - last //用R+j
last = v;
}
for(int i = 1; i <= R; i++)
for(int j = 1; j <= C; j++) {
g.AddEdge(i, R+j, 19);
no[i][j] = g.edges.size() - 2; // no[i][j] is the index of arc for cell(i,j)
} //-2是因为加了反向边
g.Maxflow(0, R+C+1);
printf("Matrix %d
", kase);
for(int i = 1; i <= R; i++) {
for(int j = 1; j <= C; j++)
printf("%d ", g.edges[no[i][j]].flow + 1); // we subtracted 1 from every cell
printf("
");
}
printf("
");
}
return 0;
}