• pytorch实现分类


    完整代码

    #实现分类
    import torch
    import torch.nn.functional as F
    from torch.autograd import Variable
    import matplotlib.pyplot as plt
    import torch.optim as optim
    
    #生成数据
    n_data = torch.ones(100, 2)
    x0 = torch.normal(2*n_data, 1)
    y0 = torch.zeros(100)
    x1 = torch.normal(-2*n_data,1)
    y1 = torch.ones(100)
    #x当做数据,y当做标签
    x = torch.cat((x0,x1), 0).type(torch.FloatTensor)
    y = torch.cat((y0,y1), ).type(torch.LongTensor)
    
    x,y = Variable(x),Variable(y)
    
    #绘制图像
    #plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, )
    #plt.show()
    
    
    #定义网络
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)
            self.predict = torch.nn.Linear(n_hidden,n_output)
    
        def forward(self, x):
            x = F.relu(self.hidden(x))
            x = self.predict(x)
            return x
    #输入是两个特征,x对应的特征和y对应的特征,输出是2个类,0和1
    net = Net(2, 10, 2)
    #print(net)  
    #输出为[0,1]说明图片为class1,若是[1,0],说明输出为class0。这是二分类
    #输出为[0,1,0]说明图片为class1,若是[1,0,0],说明输出为class0,若是[0,0,1],说明输出为class2。这是三分类
    
    
    #优化
    optimizer = optim.SGD(net.parameters(), lr=0.02)
    loss_func = torch.nn.CrossEntropyLoss() 
    #输出是概率
    
    #可视化
    plt.ion()
    #plt.show()
    
    for t in range(100):
        out = net(x)
        loss = loss_func(out, y) #预测值和真实值
    
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        #可视化
        if t % 2 == 0:
            plt.cla()
            prediction = torch.max(F.softmax(out), 1)[1]
            pred_y = prediction.data.numpy().squeeze()
            target_y = y.data.numpy()
            plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
            accuracy = sum(pred_y == target_y)/200
            plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    
    plt.ioff()
    plt.show()
  • 相关阅读:
    20170228 Z_po_send_email
    MRP 流程
    MRP 中的数据元素
    笔记:使用 Protel 99 SE 改一块车充 PCB
    PCB 锣板和半孔工艺的差别
    笔记:LIR2032 电池充电记录
    笔记:开源协议 Apache 2 和 GPL 兼容
    FastAdmin 在 CRUD 时出现 exec() has been disabled for security reasons 怎么办?
    FastAdmin 学习线路 (2018-09-09 增加 Layer 组件)
    记录一下变压器的焊盘问题
  • 原文地址:https://www.cnblogs.com/loyolh/p/12290935.html
Copyright © 2020-2023  润新知