题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1061
题目类型:
水题
题意概括:
求n的n次方的个位数。
解题思路:
因为N的范围太大,所以我通过对位数为1-9的数进行20次次方打表,发现他们的循环节不是4,就是4的因子,所以我对位数为1-9进行打表四次,然后对输入的数只判断个位数,然后判断这个数在第几循环节并输出即可。
题目:
Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 55914 Accepted Submission(s): 21129
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7.
In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.# include <stdio.h> # include <string.h> int main () { int i,j,t,n,x,y; int a[10][10]; memset(a,0,sizeof(a)); for(i=1;i<10;i++) { a[i][1]=i; for(j=2;j<5;j++) { a[i][j]=a[i][j-1]*i%10; } a[i][0]=a[i][4]; } scanf("%d",&t); while(t--) { scanf("%d",&n); x=n%10; y=n%4; printf("%d ",a[x][y]); } }