• 2-电影推荐案例学习


    案例来源

    • 尚硅谷推荐系统项目案例

    整体架构

    • 概述
      • 统计模块,召回历史最热、最近最热、平均评分最高、每类别评分Top10
      • 离线推荐,基于ALS召回与用户最相近、与电影最相近的TopN电影
      • 实时推荐,基于离线推荐计算的电影相似度矩阵,结合用户最近K次评分,计算当前评分电影的某个相似电影与最近K次评分电影的平均相似得分,混合增强减弱因子,获得当前评分电影的相似电影序列的排序结果
      • 内容推荐,基于TF-IDF计算电影之间的相似度,获取电影相似度矩阵,召回逻辑未实现
      • 问题:没有过滤模块,没有混排模块(视具体场景而定)

    代码结构及pom文件配置

    • 代码结构
    • 推荐工程pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>com.lotuslaw</groupId>
        <artifactId>MovieRecommendSystem</artifactId>
        <packaging>pom</packaging>
        <version>1.0-SNAPSHOT</version>
        <modules>
            <module>recommender</module>
        </modules>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
            <log4j.version>1.2.17</log4j.version>
            <slf4j.version>1.7.22</slf4j.version>
            <mongodb-spark.version>2.0.0</mongodb-spark.version>
            <casbah.version>3.1.1</casbah.version>
            <elasticsearch-spark.version>5.6.2</elasticsearch-spark.version>
            <elasticsearch.version>5.6.2</elasticsearch.version>
            <redis.version>2.9.0</redis.version>
            <kafka.version>0.10.2.1</kafka.version>
            <spark.version>2.1.1</spark.version>
            <scala.version>2.11.8</scala.version>
            <jblas.version>1.2.1</jblas.version>
        </properties>
    
        <dependencies>
            <!--引入共同的日志管理工具-->
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>jcl-over-slf4j</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-api</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
                <version>${log4j.version}</version>
            </dependency>
        </dependencies>
    
        <build>
            <!--声明并引入子项目共有的插件-->
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.6.1</version>
                    <!--所有的编译用 JDK1.8-->
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                    </configuration>
                </plugin>
            </plugins>
            <pluginManagement>
                <plugins>
                    <!--maven 的打包插件-->
                    <plugin>
                        <groupId>org.apache.maven.plugins</groupId>
                        <artifactId>maven-assembly-plugin</artifactId>
                        <version>3.0.0</version>
                        <executions>
                            <execution>
                                <id>make-assembly</id>
                                <phase>package</phase>
                                <goals>
                                    <goal>single</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                    <!--该插件用于将 scala 代码编译成 class 文件-->
                    <plugin>
                        <groupId>net.alchim31.maven</groupId>
                        <artifactId>scala-maven-plugin</artifactId>
                        <version>3.2.2</version>
                        <executions>
                            <!--绑定到 maven 的编译阶段-->
                            <execution>
                                <goals>
                                    <goal>compile</goal>
                                    <goal>testCompile</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                </plugins>
            </pluginManagement>
        </build>
    </project>
    
    • recommender pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>MovieRecommendSystem</artifactId>
            <groupId>com.lotuslaw</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>recommender</artifactId>
        <packaging>pom</packaging>
        <modules>
            <module>DataLoader</module>
            <module>StatisticsRecommender</module>
            <module>OfflineRecommender</module>
            <module>StreamingRecommender</module>
            <module>ContentRecommender</module>
            <module>KafkaStream</module>
        </modules>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
        </properties>
    
        <dependencyManagement>
            <dependencies>
                <!-- 引入 Spark 相关的 Jar 包 -->
                <dependency>
                    <groupId>org.apache.spark</groupId>
                    <artifactId>spark-core_2.11</artifactId>
                    <version>${spark.version}</version>
                </dependency>
                <dependency>
                    <groupId>org.apache.spark</groupId>
                    <artifactId>spark-sql_2.11</artifactId>
                    <version>${spark.version}</version>
                </dependency>
                <dependency>
                    <groupId>org.apache.spark</groupId>
                    <artifactId>spark-streaming_2.11</artifactId>
                    <version>${spark.version}</version>
                </dependency>
                <dependency>
                    <groupId>org.apache.spark</groupId>
                    <artifactId>spark-mllib_2.11</artifactId>
                    <version>${spark.version}</version>
                </dependency>
                <dependency>
                    <groupId>org.apache.spark</groupId>
                    <artifactId>spark-graphx_2.11</artifactId>
                    <version>${spark.version}</version>
                </dependency> <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
            </dependencies>
        </dependencyManagement>
    
        <build>
            <plugins>
                <!-- 父项目已声明该 plugin,子项目在引入的时候,不用声明版本和已经声明的配置 -->
                <plugin>
                    <groupId>net.alchim31.maven</groupId>
                    <artifactId>scala-maven-plugin</artifactId>
                </plugin>
            </plugins>
        </build>
    </project>
    
    • DataLoader pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>recommender</artifactId>
            <groupId>com.lotuslaw</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>DataLoader</artifactId>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
        </properties>
    
        <dependencies>
            <!-- Spark 的依赖引入 -->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-sql_2.11</artifactId>
            </dependency>
            <!-- 引入 Scala -->
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
            </dependency>
            <!-- 加入 MongoDB 的驱动 -->
            <dependency>
                <groupId>org.mongodb</groupId>
                <artifactId>casbah-core_2.11</artifactId>
                <version>${casbah.version}</version>
            </dependency>
            <dependency>
                <groupId>org.mongodb.spark</groupId>
                <artifactId>mongo-spark-connector_2.11</artifactId>
                <version>${mongodb-spark.version}</version>
            </dependency>
            <!-- 加入 ElasticSearch 的驱动 -->
            <dependency>
                <groupId>org.elasticsearch.client</groupId>
                <artifactId>transport</artifactId>
                <version>${elasticsearch.version}</version>
            </dependency>
            <dependency>
                <groupId>org.elasticsearch</groupId>
                <artifactId>elasticsearch-spark-20_2.11</artifactId>
                <version>${elasticsearch-spark.version}</version>
                <!-- 将不需要依赖的包从依赖路径中除去 -->
                <exclusions>
                    <exclusion>
                        <groupId>org.apache.hive</groupId>
                        <artifactId>hive-service</artifactId>
                    </exclusion>
                </exclusions>
            </dependency>
        </dependencies>
    </project>
    
    • StatisticsRecommender pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>recommender</artifactId>
            <groupId>com.lotuslaw</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>StatisticsRecommender</artifactId>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
        </properties>
    
        <dependencies>
            <!-- Spark 的依赖引入 -->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-sql_2.11</artifactId>
            </dependency>
            <!-- 引入 Scala -->
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
            </dependency>
            <!-- 加入 MongoDB 的驱动 -->
            <dependency>
                <groupId>org.mongodb</groupId>
                <artifactId>casbah-core_2.11</artifactId>
                <version>${casbah.version}</version>
            </dependency>
            <dependency>
                <groupId>org.mongodb.spark</groupId>
                <artifactId>mongo-spark-connector_2.11</artifactId>
                <version>${mongodb-spark.version}</version>
            </dependency>
        </dependencies>
    </project>
    
    • OfflineRecommender pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>recommender</artifactId>
            <groupId>com.lotuslaw</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>OfflineRecommender</artifactId>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.scalanlp</groupId>
                <artifactId>jblas</artifactId>
                <version>${jblas.version}</version>
            </dependency>
            <!-- 引入 Spark 相关的 Jar 包 -->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-sql_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-mllib_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
            <!-- 加入 MongoDB 的驱动 -->
            <dependency>
                <groupId>org.mongodb</groupId>
                <artifactId>casbah-core_2.11</artifactId>
                <version>${casbah.version}</version>
            </dependency>
            <dependency>
                <groupId>org.mongodb.spark</groupId>
                <artifactId>mongo-spark-connector_2.11</artifactId>
                <version>${mongodb-spark.version}</version>
            </dependency>
        </dependencies>
    </project>
    
    • StreamingRecommender pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>recommender</artifactId>
            <groupId>com.lotuslaw</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>StreamingRecommender</artifactId>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
        </properties>
    
        <dependencies>
            <!-- Spark 的依赖引入 -->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-sql_2.11</artifactId>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
            </dependency>
            <!-- 引入 Scala -->
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
            </dependency>
            <!-- 加入 MongoDB 的驱动 -->
            <!-- 用于代码方式连接 MongoDB -->
            <dependency>
                <groupId>org.mongodb</groupId>
                <artifactId>casbah-core_2.11</artifactId>
                <version>${casbah.version}</version>
            </dependency>
            <!-- 用于 Spark 和 MongoDB 的对接 -->
            <dependency>
                <groupId>org.mongodb.spark</groupId>
                <artifactId>mongo-spark-connector_2.11</artifactId>
                <version>${mongodb-spark.version}</version>
            </dependency>
            <!-- redis -->
            <dependency>
                <groupId>redis.clients</groupId>
                <artifactId>jedis</artifactId>
                <version>3.2.0</version>
            </dependency>
            <!-- kafka -->
            <dependency>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
                <version>2.7.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
        </dependencies>
    </project>
    
    • ContentRecommender pom
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>recommender</artifactId>
            <groupId>com.lotuslaw</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>ContentRecommender</artifactId>
    
        <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.scalanlp</groupId>
                <artifactId>jblas</artifactId>
                <version>${jblas.version}</version>
            </dependency>
            <!-- 引入 Spark 相关的 Jar 包 -->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-sql_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-mllib_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
            <!-- 加入 MongoDB 的驱动 -->
            <dependency>
                <groupId>org.mongodb</groupId>
                <artifactId>casbah-core_2.11</artifactId>
                <version>${casbah.version}</version>
            </dependency>
            <dependency>
                <groupId>org.mongodb.spark</groupId>
                <artifactId>mongo-spark-connector_2.11</artifactId>
                <version>${mongodb-spark.version}</version>
            </dependency>
        </dependencies>
    </project>
    

    各模块代码

    • DataLoader
    package com.lotuslaw.recommender
    
    import com.mongodb.casbah.commons.MongoDBObject
    import com.mongodb.casbah.{MongoClient, MongoClientURI}
    import org.apache.spark.SparkConf
    import org.apache.spark.sql.{DataFrame, SparkSession}
    import org.elasticsearch.action.admin.indices.create.CreateIndexRequest
    import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest
    import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsRequest
    import org.elasticsearch.common.settings.Settings
    import org.elasticsearch.common.transport.InetSocketTransportAddress
    import org.elasticsearch.transport.client.PreBuiltTransportClient
    
    import java.net.InetAddress
    
    /**
     * @author: lotuslaw
     * @version: V1.0
     * @package: com.lotuslaw.recommender
     * @create: 2021-08-23 22:49
     * @description:
     */
    
    /**
     * Movie 数据集
     * 260                                                               电影ID:mid
     * Star Wars: Episode IV - A New Hope (1977)                         电影名称:name
     * Princess Leia is captured and held hostage by the evil            详情描述:descri
     * 121 minutes                                                       时长:timelong
     * September 21, 2004                                                发行时间:issue
     * 1977                                                              拍摄时间:shoot
     * English                                                           语言:language
     * Action|Adventure|Sci-Fi                                           类型:genres
     * Mark Hamill|Harrison Ford|Carrie Fisher|Peter Cushing|Alec        演员表:actors
     * George Lucas                                                      导演:directors
     */
    case class Movie(mid: Int, name: String, descri: String, timelong: String, issue: String, shoot: String, language: String,
                     genres: String, actors: String, directors: String)
    
    /**
     * Ratings 数据集
     * 1,31,2.5,1260759144
     */
    case class Rating(uid: Int, mid: Int, score: Double, timestamp: Int)
    
    /**
     * Tags 数据集
     * 15,1955,dentist,1193435061
     */
    case class Tag(uid: Int, mid: Int, tag: String, timestamp: Int)
    
    // 把mongo和ES的配置封装成样例类
    /**
     *
     * @param uri MongoDB连接
     * @param db MongoDB数据库
     */
    case class MongoConfig(uri: String, db: String)
    
    /**
     *
     * @param httpHosts         http主机列表
     * @param transportHosts    transport主机列表
     * @param index             需要操作的索引
     * @param clustername       集群名称,es-cluster
     */
    case class ESConfig(httpHosts: String, transportHosts: String, index: String, clustername: String)
    
    
    
    object DataLoader {
    
      // 定义常量
      val MOVIE_DATA_PATH = "C:\Users\86188\Desktop\推荐系统课程\5.推荐工程\recommender\DataLoader\src\main\resources\movies.csv"
      val RATING_DATA_PATH = "C:\Users\86188\Desktop\推荐系统课程\5.推荐工程\recommender\DataLoader\src\main\resources\ratings.csv"
      val TAG_DATA_PATH = "C:\Users\86188\Desktop\推荐系统课程\5.推荐工程\recommender\DataLoader\src\main\resources\tags.csv"
    
      val MONGODB_MOVIE_COLLECTION = "Movie"
      val MONGODB_RATING_COLLECTION = "Rating"
      val MONGODB_TAG_COLLECTION = "Tag"
      val ES_MOVIE_INDEX = "Movie"
    
      def main(args: Array[String]): Unit = {
    
        val config = Map(
          "spark.cores" -> "local[*]",
          "mongo.uri" -> "mongodb://192.168.88.132:27017/recommender",
          "mongo.db" -> "recommender",
          "es.httpHosts" -> "linux:9200",
          "es.transportHosts" -> "linux:9300",
          "es.index" -> "recommender",
          "es.cluster.name" -> "es-cluster"
        )
    
        // 创建一个sparkConf
        val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("DataLoader")
    
        // 创建一个sparkSession
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    
        import spark.implicits._
    
        // 加载数据
        val movieRDD = spark.sparkContext.textFile(MOVIE_DATA_PATH)
        val movieDF = movieRDD.map{
          item => {
            val attr = item.split("\^")
            Movie(attr(0).toInt, attr(1).trim, attr(2).trim, attr(3).trim, attr(4).trim, attr(5).trim, attr(6).trim, attr(7).trim, attr(8).trim, attr(9).trim)
          }
        }.toDF()
    
        val ratingRDD = spark.sparkContext.textFile(RATING_DATA_PATH)
        val ratingDF = ratingRDD.map{
          item => {
            val attr = item.split(",")
            Rating(attr(0).toInt, attr(1).toInt, attr(2).toDouble, attr(3).toInt)
          }
        }.toDF()
    
        val tagRDD = spark.sparkContext.textFile(TAG_DATA_PATH)
        val tagDF = tagRDD.map{
          item => {
            val attr = item.split(",")
            Tag(attr(0).toInt, attr(1).toInt, attr(2).trim, attr(3).toInt)
          }
        }.toDF()
    
        implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
        // 将数据保存到MongoDB
        storeDataInMongoDB(movieDF, ratingDF, tagDF)
    
        // 数据预处理,把movie对应的tag信息添加进去,加一列 tag1|tag2|tag3...
        import org.apache.spark.sql.functions._
    
        /**
         * mid, tags
         * tags: tag1|tag2|tag3...
         */
        val newTag = tagDF.groupBy($"mid")
          .agg(concat_ws("|", collect_set($"tag")).as("tags"))
          .select("mid", "tags")
    
        // 对newTag和movie做join,数据合并在一起,左外连接
        val movieWithTagsDF = movieDF.join(newTag, Seq("mid"), "left")
    
        implicit val esConfig: ESConfig = ESConfig(config("es.httpHosts"), config("es.transportHosts"), config("es.index"), config("es.cluster.name"))
    
        // 保存数据到ES
        storeDataInES(movieWithTagsDF)
    
    //    spark.stop()
      }
    
      def storeDataInMongoDB(movieDF: DataFrame, ratingDF: DataFrame, tagDF: DataFrame)(implicit mongoConfig: MongoConfig): Unit = {
        // 新建一个mongodb的连接
        val mongoClient = MongoClient(MongoClientURI(mongoConfig.uri))
    
        // 如果mongodb中已经有相应的数据库,先删除
        mongoClient(mongoConfig.db)(MONGODB_MOVIE_COLLECTION).dropCollection()
        mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION).dropCollection()
        mongoClient(mongoConfig.db)(MONGODB_TAG_COLLECTION).dropCollection()
    
        // 将数据写入mongodb表中
        movieDF.write
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_MOVIE_COLLECTION)
          .mode("overwrite")
          .format("com.mongodb.spark.sql")
          .save()
    
        ratingDF.write
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_RATING_COLLECTION)
          .mode("overwrite")
          .format("com.mongodb.spark.sql")
          .save()
    
        tagDF.write
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_TAG_COLLECTION)
          .mode("overwrite")
          .format("com.mongodb.spark.sql")
          .save()
    
        // 对数据表建索引
        // 1 为指定按升序创建索引
        mongoClient(mongoConfig.db)(MONGODB_MOVIE_COLLECTION).createIndex(MongoDBObject("mid" -> 1))
        mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION).createIndex(MongoDBObject("uid" -> 1))
        mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION).createIndex(MongoDBObject("mid" -> 1))
        mongoClient(mongoConfig.db)(MONGODB_TAG_COLLECTION).createIndex(MongoDBObject("uid" -> 1))
        mongoClient(mongoConfig.db)(MONGODB_TAG_COLLECTION).createIndex(MongoDBObject("mid" -> 1))
        mongoClient.close()
      }
    
      def storeDataInES(movieDF: DataFrame)(implicit eSConfig: ESConfig): Unit = {
        // 新建es配置
        val settings: Settings = Settings.builder().put("cluster.name", eSConfig.clustername).build()
    
        // 新建一个es客户端
        val esClient = new PreBuiltTransportClient(settings)
        val REGEX_HOST_PORT = "(.+):(\d+)".r
        eSConfig.transportHosts.split(",").foreach{
          case REGEX_HOST_PORT(host: String, port: String) =>
            esClient.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(host), port.toInt))
        }
    
        // 先清理遗留的数据
        if(esClient.admin().indices().exists(new IndicesExistsRequest(eSConfig.index))
          .actionGet()
          .isExists
        ) {
          esClient.admin().indices().delete(new DeleteIndexRequest(eSConfig.index))
        }
        esClient.admin().indices().create(new CreateIndexRequest(eSConfig.index))
        movieDF.write
          .option("es.nodes", eSConfig.httpHosts)
          .option("es.http.timeout", "100m")
          .option("es.mapping.id", "mid")
          .option("es.nodes.wan.only","true")
          .mode("overwrite")
          .format("org.elasticsearch.spark.sql")
          .save(eSConfig.index + "/" + ES_MOVIE_INDEX)
      }
    }
    
    • StatisticsRecommender
    package com.lotuslaw.statistics
    
    import org.apache.spark.SparkConf
    import org.apache.spark.sql.{DataFrame, SparkSession}
    
    import java.text.SimpleDateFormat
    import java.util.Date
    
    /**
     * @author: lotuslaw
     * @version: V1.0
     * @package: com.lotuslaw.statistics
     * @create: 2021-08-24 11:24
     * @description:
     */
    
    case class Movie(mid: Int, name: String, descri: String, timelong: String, issue: String, shoot: String, language: String,
                     genres: String, actors: String, directors: String)
    
    case class Rating(uid: Int, mid: Int, score: Double, timestamp: Int)
    
    case class MongoConfig(uri: String, db: String)
    
    // 定义一个基础推荐对象
    case class Recommendation(mid: Int, score: Double)
    
    // 定义电影类别top10推荐对象
    case class GenresRecommendation(genres: String, recs: Seq[Recommendation])
    
    object StatisticsRecommender {
    
      // 定义表名
      val MONGODB_MOVIE_COLLECTION = "Movie"
      val MONGODB_RATING_COLLECTION = "Rating"
    
      // 统计表的名称
      val RATE_MORE_MOVIES = "RateMoreMovies"
      val RATE_MORE_RECENTLY_MOVIES = "RateMoreRecentlyMovies"
      val AVERAGE_TOP_MOVIES = "AverageMovies"
      val GENRES_TOP_MOVIES = "GenresTopMovies"
    
      def main(args: Array[String]): Unit = {
        val config = Map(
          "spark.cores" -> "local[*]",
          "mongo.uri" -> "mongodb://linux:27017/recommender",
          "mongo.db" -> "recommender"
        )
    
        // 创建一个sparkConf
        val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("DataLoader")
    
        // 创建一个sparkSession
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    
        import spark.implicits._
    
        implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
    
        // 从mongodb加载数据
        val ratingDF = spark.read
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_RATING_COLLECTION)
          .format("com.mongodb.spark.sql")
          .load()
          .as[Rating]
          .toDF()
    
        val movieDF = spark.read
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_MOVIE_COLLECTION)
          .format("com.mongodb.spark.sql")
          .load()
          .as[Movie]
          .toDF()
    
        // 创建名为ratings的临时表
        ratingDF.createOrReplaceTempView("ratings")
    
        // TODO: 不同的统计推荐结果
        // 1.历史热门统计:历史评分数据最多,mid,count
        val rateMoreMoviesDF = spark.sql("select mid, count(mid) as count from ratings group by mid")
        // 把结果写入对应的mongodb表中
        storeDFInMongoDB(rateMoreMoviesDF, RATE_MORE_MOVIES)
        // 2.近期热门统计:按照"yyyyMM"格式选取最近的评分数据,统计评分个数
        // 创建一个日期格式化工具
        val simpleDateFormat = new SimpleDateFormat("yyyyMM")
        // 注册udf,把时间戳转换成年月格式
        spark.udf.register("changDate", (x: Int) => simpleDateFormat.format(new Date(x * 1000L)).toInt)
        // 对原始数据做处理,去掉uid
        val ratingOfYearMonth = spark.sql("select mid, score, changDate(timestamp) as yearmonth from ratings")
        ratingOfYearMonth.createOrReplaceTempView("ratingOfMonth")
    
        // 从ratingOfMonth中查找电影在各个月份的评分,mid,count,yearmonth
        val rateMoreRecentlyMoviesDF = spark.sql("select mid, count(mid) as count, yearmonth from ratingOfMonth group by yearmonth, mid order by yearmonth desc, count desc")
        // 存入mongodb
        storeDFInMongoDB(rateMoreRecentlyMoviesDF, RATE_MORE_RECENTLY_MOVIES)
        // 3.优质电影统计,统计电影的平均评分
        val averageMoviesDF = spark.sql("select mid, avg(score) as avg from ratings group by mid")
        storeDFInMongoDB(averageMoviesDF, AVERAGE_TOP_MOVIES)
        // 4.各类别电影Top统计
        // 定义所有类别
        val genres = List("Action","Adventure","Animation","Comedy","Crime","Documentary","Drama","Famiy","Fantasy","Foreign","History","Horror","Music","Mystery","Romance","Science","Tv","Thriller","War","Western")
        // 把平均评分加入movie表里,加一列,inner join
        val movieWithScore = movieDF.join(averageMoviesDF, "mid")
        // 为做笛卡尔积,把genres转成rdd
        val genresRDD = spark.sparkContext.makeRDD(genres)
        // 计算类别top10, 首先对类别和电影做笛卡尔积
        val genresTopMoviesDF = genresRDD.cartesian(movieWithScore.rdd)
          .filter{
            // 条件过滤找出movie的字段genres值包含当前类别genre的那些
            case (genre, movieRow) => movieRow.getAs[String]("genres").toLowerCase.contains(genre.toLowerCase())
          }
          .map{
            case (genre, movieRow) => (genre, (movieRow.getAs[Int]("mid"), movieRow.getAs[Double]("avg")))
          }
          .groupByKey()
          .map{
            case (genre, items) => GenresRecommendation(genre, items.toList.sortWith(_._2>_._2).take(10).map{
              items => Recommendation(items._1, items._2)
            })
          }
          .toDF()
        storeDFInMongoDB(genresTopMoviesDF, GENRES_TOP_MOVIES)
        spark.stop()
      }
    
      def storeDFInMongoDB(df: DataFrame, collection_name: String)(implicit mongoConfig: MongoConfig): Unit = {
        df.write
          .option("uri", mongoConfig.uri)
          .option("collection", collection_name)
          .mode("overwrite")
          .format("com.mongodb.spark.sql")
          .save()
      }
    }
    
    • OfflineRecommender
    package com.lotuslaw.offline
    
    import org.apache.spark.SparkConf
    import org.apache.spark.mllib.recommendation.{ALS, Rating}
    import org.apache.spark.sql.SparkSession
    import org.jblas.DoubleMatrix
    
    /**
     * @author: lotuslaw
     * @version: V1.0
     * @package: com.lotuslaw.offline
     * @create: 2021-08-24 14:49
     * @description:
     */
    
    // 基于评分数据的隐语义模型只需要rating数据
    case class MovieRating(uid: Int, mid: Int, score: Double, timestamp: Int)
    
    case class MongoConfig(uri: String, db: String)
    
    case class Recommendation(mid: Int, score: Double)
    
    // 定义基于预测评分的用户推荐列表
    case class UserRecs(uid: Int, recs: Seq[Recommendation])
    
    // 定义基于LFM电影特征向量的电影相似度列表
    case class MovieRecs(mid: Int, recs: Seq[Recommendation])
    
    object OfflineRecommender {
    
      // 定义表名和常量
      val MONGODB_RATING_COLLECTION = "Rating"
    
      val USER_RECS = "UserRecs"
      val MOVIE_RECS = "MovieRecs"
    
      val USER_MAX_RECOMMENTDATION = 20
    
      def main(args: Array[String]): Unit = {
        val config = Map(
          "spark.cores" -> "local[*]",
          "mongo.uri" -> "mongodb://linux:27017/recommender",
          "mongo.db" -> "recommender"
        )
    
        val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("OfflineRecommender")
    
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    
        import spark.implicits._
    
        implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
    
        // 加载数据
        val ratingRDD = spark.read
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_RATING_COLLECTION)
          .format("com.mongodb.spark.sql")
          .load()
          .as[MovieRating]
          .rdd
          .map{rating => (rating.uid, rating.mid, rating.score)}  // 转化成rdd并去掉时间戳
          .cache()
    
        // 从rating数据中提取所有的uid,mid,并去重
        val userRDD = ratingRDD.map(_._1).distinct()
        val movieRDD = ratingRDD.map(_._2).distinct()
    
        // 训练隐语义模型
        val trainData = ratingRDD.map(x => Rating(x._1, x._2, x._3))
        val (rank, iterations, lambda) = (100, 5, 0.1)
        val model = ALS.train(trainData, rank, iterations, lambda)
    
        // 基于用户和电影的隐特征,计算预测评分,得到用户的推荐列表
        // 计算user和movie的笛卡尔积,得到一个评分矩阵
        val userMovies = userRDD.cartesian(movieRDD)
    
        // 调用model的predict方法预测评分
        val preRatings = model.predict(userMovies)
    
        val userRecs = preRatings
          .filter(_.rating > 0)  // 过滤出评分大于0的项
          .map(rating => (rating.user, (rating.product, rating.rating)))
          .groupByKey()
          .map{
            case (uid, recs) => UserRecs(uid, recs.toList.sortWith(_._2>_._2).take(USER_MAX_RECOMMENTDATION).map(x=>Recommendation(x._1, x._2)))
          }
          .toDF()
    
        userRecs.write
          .option("uri", mongoConfig.uri)
          .option("collection", USER_RECS)
          .format("com.mongodb.spark.sql")
          .save()
    
        // 基于电影隐特征计算相似度矩阵,得到电影的相似度列表
        val movieFeatures = model.productFeatures.map{
          case (mid, features) => (mid, new DoubleMatrix(features))
        }
    
        // 对所有电影两两计算他们的相似度,先做笛卡尔积
        val movieRecs = movieFeatures.cartesian(movieFeatures)
          .filter{
            // 把自己跟自己的配对过滤掉
            case (a, b) => a._1 != b._1
          }
          .map{
            case (a, b) =>
              val simScore = this.consinSim(a._2, b._2)
              (a._1, (b._1, simScore))
          }
          .filter(_._2._2>0.6)  // 过滤出相似度大于0.6的
          .groupByKey()
          .map{
            case (mid, items) => MovieRecs(mid, items.toList.sortWith(_._2>_._2).map(x=>Recommendation(x._1, x._2)))
          }
          .toDF()
    
        movieRecs.write
          .option("uri", mongoConfig.uri)
          .option("collection", MOVIE_RECS)
          .mode("overwrite")
          .format("com.mongodb.spark.sql")
          .save()
    
        spark.stop()
      }
    
      // 求向量余弦相似度
      def consinSim(movie1: DoubleMatrix, movie2: DoubleMatrix): Double = {
        movie1.dot(movie2) / (movie1.norm2() * movie2.norm2())
      }
    }
    
    • StreamingRecommender
    package com.lotuslaw.streaming
    
    import com.mongodb.casbah.commons.MongoDBObject
    import com.mongodb.casbah.{MongoClient, MongoClientURI}
    import org.apache.kafka.common.serialization.StringDeserializer
    import org.apache.spark.SparkConf
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import redis.clients.jedis.Jedis
    
    /**
     * @author: lotuslaw
     * @version: V1.0
     * @package: com.lotuslaw.streaming
     * @create: 2021-08-24 16:29
     * @description:
     */
    
    // 定义连接助手对象,序列化
    object ConnHelper extends Serializable {
      lazy val jedis = new Jedis("linux")
      lazy val mongoClient: MongoClient = MongoClient(MongoClientURI("mongodb://linux:27017/recommender"))
    }
    
    case class MongoConfig(uri: String, db: String)
    // 标准推荐
    case class Recommendation(mid: Int, score: Double)
    // 用户的推荐
    case class UserRecs(uid: Int, recs: Seq[Recommendation])
    //电影的相似度
    case class MovieRecs(mid: Int, recs: Seq[Recommendation])
    
    object StreamingRecommender {
    
      // 定义表名与常量
      val MAX_USER_RATINGS_NUM = 20
      val MAX_SIM_MOVIES_NUM = 20
      val MONGODB_STREAM_RECS_COLLECTION = "StreamRecs"
      val MONGODB_RATING_COLLECTION = "Rating"
      val MONGODB_MOVIE_RECS_COLLECTION = "MovieRecs"
    
      def main(args: Array[String]): Unit = {
        val config = Map(
          "spark.cores" -> "local[*]",
          "mongo.uri" -> "mongodb://linux:27017/recommender",
          "mongo.db" -> "recommender",
          "kafka.topic" -> "recommender"
        )
    
        val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("StreamingRecommender")
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    
        // 拿到streaming context
        val sc = spark.sparkContext
        val ssc = new StreamingContext(sc, Seconds(2))  // batch duration
    
        import spark.implicits._
    
        implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
    
        // 加载电影相似度矩阵数据,把它广播出去
        val simMovieMatrix = spark.read
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_MOVIE_RECS_COLLECTION)
          .format("com.mongodb.spark.sql")
          .load()
          .as[MovieRecs]
          .rdd
          .map { movieRecs => // 为了查询相似度方便,转换成map
            (movieRecs.mid, movieRecs.recs.map(x=>(x.mid, x.score)).toMap)
          }.collectAsMap()
    
        val simMovieMatrixBroadCast = sc.broadcast(simMovieMatrix)
    
        // 定义kafka连接参数
        val kafkaParam = Map(
          "bootstrap.servers" -> "linux:9092",
          "key.deserializer" -> classOf[StringDeserializer],
          "value.deserializer" -> classOf[StringDeserializer],
          "group.id" -> "recommender",
          "auto.offset.reset" -> "latest"
        )
        // 通过kafka创建一个DSteam
        val kafkaStream = KafkaUtils.createDirectStream[String, String](
          ssc,
          LocationStrategies.PreferConsistent,
          ConsumerStrategies.Subscribe[String, String](Array(config("kafka.topic")), kafkaParam)
        )
    
        // 把原始数据UID|MID|SCORE|TIMESTAMP转换成评分流
        val ratingStream = kafkaStream.map {
          msg =>
            val attr = msg.value().split("\|")
            (attr(0).toInt, attr(1).toInt, attr(2).toDouble, attr(3).toInt)
        }
    
        // 继续做流式处理,核心算法部分
        ratingStream.foreachRDD{
          rdds => rdds.foreach{
            case (uid, mid, score, timestamp) =>
              println("rating data coming! >>>>>>>>>>>>>>>>>>")
            // 从redis里获取当前用户最近的k次评分,保存成Array[(mid, score)]
              val userRecntlyRatings = getUserRecentlyRating(MAX_USER_RATINGS_NUM, uid, ConnHelper.jedis)
    
            // 从相似度矩阵中取出当前电影最相似的N个电影,作为备选列表,Array[mid]
              val candidateMovies = getTopSimMovies(MAX_SIM_MOVIES_NUM, mid, uid, simMovieMatrixBroadCast.value)
    
            // 对每个备选电影,计算推荐优先级,得到当前用户的实时推荐列表,Array[(mid, score)]
              val streamRecs = computeMovieScore(candidateMovies, userRecntlyRatings, simMovieMatrixBroadCast.value)
    
            // 把推荐数据保存到mongodb
              saveDataToMongoDB(uid, streamRecs)
          }
        }
    
        // 开始接收和处理数据
        ssc.start()
        println(">>>>>>>>>>>>>>> straming started")
        ssc.awaitTermination()
      }
    
      // Redis操作返回的是java类,为了用map操作需要引入转换类
      import scala.collection.JavaConversions._
      def getUserRecentlyRating(num: Int, uid: Int, jedis: Jedis): Array[(Int, Double)] = {
        // 从Redis读取数据,用户评分数据保存在uid:UID 为key的队列里,value是MID:SCORE
        jedis.lrange("uid:" + uid, 0, num-1)
          .map{
            item =>
              val attr = item.split("\:")
              (attr(0).trim.toInt, attr(1).trim.toDouble)
          }
          .toArray
      }
    
      /**
       * 获取当前电影最相似的num个电影,作为备选电影
       * @param num 相似电影数量
       * @param mid 当前电影ID
       * @param uid 当前评分用户ID
       * @param simMovies 相似度矩阵
       * @return 过滤之后的备选电影列表
       */
      def getTopSimMovies(num: Int, mid: Int, uid: Int, simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]])(implicit mongoConfig: MongoConfig): Array[Int] = {
        // 从相似度矩阵中拿到所有相似的电影
        val allSimMovies = simMovies(mid).toArray
    
        // 从mongodb中查询用户已看过的电影
        val ratingExist = ConnHelper.mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION)
          .find(MongoDBObject("uid" -> uid))
          .toArray
          .map{
            item => item.get("mid").toString.toInt
          }
    
        // 把看过的过滤,得到输出列表
        allSimMovies.filter(x => ! ratingExist.contains(x._1))
          .sortWith(_._2>_._2)
          .take(num)
          .map(x => x._1)
      }
    
      def computeMovieScore(candidateMovies: Array[Int], userRecentlyRatings: Array[(Int, Double)], simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]]): Array[(Int, Double)] = {
        // 定义一个ArrayBuffer,用于保存每一个备选电影的基础得分
        val scores = scala.collection.mutable.ArrayBuffer[(Int, Double)]()
        // 定义一个HashMap,保存每一个备选定影的增强减弱因子
        val increMap = scala.collection.mutable.HashMap[Int, Int]()
        val decreMap = scala.collection.mutable.HashMap[Int, Int]()
        for (candidateMovie <- candidateMovies; userRecentlyRating <- userRecentlyRatings) {
          // 拿到备选电影和最近评分电影的相似度
          val simScore = getMoviesSimScore(candidateMovie, userRecentlyRating._1, simMovies)
          if (simScore > 0.7) {
            // 计算备选电影的基础推荐得分
            scores += ((candidateMovie, simScore * userRecentlyRating._2))
            if (userRecentlyRating._2 > 3) {
              increMap(candidateMovie) = increMap.getOrDefault(candidateMovie, 0) + 1
            } else {
              decreMap(candidateMovie) = decreMap.getOrDefault(candidateMovie, 0) + 1
            }
          }
        }
        // 根据备选电影的mid做groupby,根据公式去求最后的推荐评分
        scores.groupBy(_._1).map{
          // groupBy之后得到的数据 Map(mid -> ArrayBuffer[(mid, score)])
          case (mid, scoreList) =>
            (mid, scoreList.map(_._2).sum / scoreList.length + log(increMap.getOrDefault(mid, 1)) - log(decreMap.getOrDefault(mid, 1)))
        }.toArray
      }
    
      // 获取两个电影之间的相似度
      def getMoviesSimScore(mid1: Int, mid2: Int, simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]]): Double = {
        simMovies.get(mid1) match {
          case Some(sims) => sims.get(mid2) match {
            case Some(score) => score
            case None => 0.0
          }
          case None => 0.0
        }
      }
    
      // 求一个数的对数
      def log(m: Int): Double = {
        val N = 10
        math.log(m) / math.log(N)
      }
    
      def saveDataToMongoDB(uid: Int, streamRecs: Array[(Int, Double)])(implicit mongoConfig: MongoConfig): Unit = {
        // 定义到StreamRecs表的连接
        val streamRecsCollection = ConnHelper.mongoClient(mongoConfig.db)(MONGODB_STREAM_RECS_COLLECTION)
    
        // 如果表中已有uid对应的数据,先删除
        streamRecsCollection.findAndRemove(MongoDBObject("uid" -> uid))
        // 将streamRecs存入表中
        streamRecsCollection.insert(MongoDBObject("uid" -> uid, "recs" -> streamRecs.map(x=>MongoDBObject("mid"->x._1, "score"->x._2))))
      }
    }
    
    • ContentRecommender
    package com.lotuslaw.content
    
    import org.apache.spark.SparkConf
    import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
    import org.apache.spark.ml.linalg.SparseVector
    import org.apache.spark.sql.SparkSession
    import org.jblas.DoubleMatrix
    
    /**
     * @author: lotuslaw
     * @version: V1.0
     * @package: com.lotuslaw.content
     * @create: 2021-08-24 19:37
     * @description:
     */
    
    // 需要的数据源是电影内容信息
    case class Movie(mid: Int, name: String, descri: String, timelong: String, issue: String, shoot: String, language: String,
                     genres: String, actors: String, directors: String)
    
    case class MongoConfig(uri: String, db: String)
    
    case class Recommendation(mid: Int, score: Double)
    
    // 定义基于电影内容信息提取出的特征向量的电影相似度列表
    case class MovieRecs(mid: Int, recs: Seq[Recommendation])
    
    object ContentRecommender {
    
      // 定义常量及表名
      val MONGODB_MOVIE_COLLECTION = "Movie"
    
      val CONTENT_MOVIE_RECS = "ContentMovieRecs"
    
      def main(args: Array[String]): Unit = {
        val config = Map(
          "spark.cores" -> "local[*]",
          "mongo.uri" -> "mongodb://linux:27017/recommender",
          "mongo.db" -> "recommender"
        )
    
        val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("OfflineRecommender")
    
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    
        import spark.implicits._
    
        implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
    
        // 加载数据并做预处理
        val movieTagsDF = spark.read
          .option("uri", mongoConfig.uri)
          .option("collection", MONGODB_MOVIE_COLLECTION)
          .format("com.mongodb.spark.sql")
          .load()
          .as[Movie]
          .map(
            x => (x.mid, x.name, x.genres.map(c=>if(c=='|') ' ' else c))
          )
          .toDF("mid", "name", "genres")
          .cache()
    
        // TODO: 从内容信息中提取电影特征向量
        // 核心部分,用TF-IDF从内容信息中提取电影特征向量
    
        // 创建一个分词器,默认按照空格分词
        val tokenizer = new Tokenizer().setInputCol("genres").setOutputCol("words")
    
        // 用分词器对原始数据做转换,生成新的一列words
        val wordsData = tokenizer.transform(movieTagsDF)
    
        // 引入HashingTF工具,可以把一个词语序列转化成对应的词频
        val hasingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(50)
        val featurizeData = hasingTF.transform(wordsData)
    
        // 引入IDF工具,可以得到idf模型
        val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
        // 训练idf模型,得到每个词的逆文档频率
        val idfModel = idf.fit(featurizeData)
    
        // 用模型对元数据进行处理,得到文档中每个词的tf-idf,作为新的特征向量
        val rescaledData = idfModel.transform(featurizeData)
    
        val movieFeatures = rescaledData.map(
          row => (row.getAs[Int]("mid"), row.getAs[SparseVector]("features").toArray)
        )
          .rdd
          .map(
            x => (x._1, new DoubleMatrix(x._2))
          )
    
        // 对所有电影两两计算他们的相似度,先做笛卡尔积
        val movieRecs = movieFeatures.cartesian(movieFeatures)
          .filter{
            // 把自己跟自己的配对过滤掉
            case (a, b) => a._1 != b._1
          }
          .map{
            case (a, b) =>
              val simScore = this.consinSim(a._2, b._2)
              (a._1, (b._1, simScore))
          }
          .filter(_._2._2>0.6)  // 过滤出相似度大于0.6的
          .groupByKey()
          .map{
            case (mid, items) => MovieRecs(mid, items.toList.sortWith(_._2>_._2).map(x=>Recommendation(x._1, x._2)))
          }
          .toDF()
    
        movieRecs.write
          .option("uri", mongoConfig.uri)
          .option("collection", CONTENT_MOVIE_RECS)
          .mode("overwrite")
          .format("com.mongodb.spark.sql")
          .save()
    
        spark.stop()
      }
    
      // 求向量余弦相似度
      def consinSim(movie1: DoubleMatrix, movie2: DoubleMatrix): Double = {
        movie1.dot(movie2) / (movie1.norm2() * movie2.norm2())
      }
    }
    
  • 相关阅读:
    篮球中PRA意思
    篮球中PRA意思
    Ajax介绍
    QQ播放器代码
    QQ播放器代码
    QQ播放器代码
    DataSet对象
    DataReader对象
    Connection对象
    DataAdapter对象
  • 原文地址:https://www.cnblogs.com/lotuslaw/p/15202642.html
Copyright © 2020-2023  润新知