• HashMap与Hashtable


    面试经常问到的问题,Hashtable和HashMap分别是啥,有啥区别。

    一、HashMap

    1、什么是Hash表

    在讨论哈希表之前,我们先大概了解下其他数据结构在新增,查找等基础操作执行性能

    数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)

    线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)

    二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。

    哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下(后面会探讨下哈希冲突的情况),仅需一次定位即可完成,时间复杂度为O(1),接下来我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的。

    我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组。

    比如我们要新增或查找某个元素,我们通过把当前元素的关键字 通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。
      
    这个函数可以简单描述为:存储位置 = f(关键字) ,这个函数f一般称为哈希函数,这个函数的设计好坏会直接影响到哈希表的优劣。举个例子,比如我们要在哈希表中执行插入操作:

    插入过程如下:

    查找操作同理,先通过哈希函数计算出实际存储地址,然后从数组中对应地址取出即可。

    哈希冲突

    然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。前面我们提到过,哈希函数的设计至关重要,好的哈希函数会尽可能地保证 计算简单和散列地址分布均匀,但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。

    二、HashMap的实现原理

    HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)

    Entry是HashMap中的接口。代码如下:

    interface Entry<K,V> {
            /**
             * Returns the key corresponding to this entry.
             *
             * @return the key corresponding to this entry
             * @throws IllegalStateException implementations may, but are not
             *         required to, throw this exception if the entry has been
             *         removed from the backing map.
             */
            K getKey();
    
            /**
             * Returns the value corresponding to this entry.  If the mapping
             * has been removed from the backing map (by the iterator's
             * <tt>remove</tt> operation), the results of this call are undefined.
             *
             * @return the value corresponding to this entry
             * @throws IllegalStateException implementations may, but are not
             *         required to, throw this exception if the entry has been
             *         removed from the backing map.
             */
            V getValue();
    
            /**
             * Replaces the value corresponding to this entry with the specified
             * value (optional operation).  (Writes through to the map.)  The
             * behavior of this call is undefined if the mapping has already been
             * removed from the map (by the iterator's <tt>remove</tt> operation).
             *
             * @param value new value to be stored in this entry
             * @return old value corresponding to the entry
             * @throws UnsupportedOperationException if the <tt>put</tt> operation
             *         is not supported by the backing map
             * @throws ClassCastException if the class of the specified value
             *         prevents it from being stored in the backing map
             * @throws NullPointerException if the backing map does not permit
             *         null values, and the specified value is null
             * @throws IllegalArgumentException if some property of this value
             *         prevents it from being stored in the backing map
             * @throws IllegalStateException implementations may, but are not
             *         required to, throw this exception if the entry has been
             *         removed from the backing map.
             */
            V setValue(V value);
    
            /**
             * Compares the specified object with this entry for equality.
             * Returns <tt>true</tt> if the given object is also a map entry and
             * the two entries represent the same mapping.  More formally, two
             * entries <tt>e1</tt> and <tt>e2</tt> represent the same mapping
             * if<pre>
             *     (e1.getKey()==null ?
             *      e2.getKey()==null : e1.getKey().equals(e2.getKey()))  &&
             *     (e1.getValue()==null ?
             *      e2.getValue()==null : e1.getValue().equals(e2.getValue()))
             * </pre>
             * This ensures that the <tt>equals</tt> method works properly across
             * different implementations of the <tt>Map.Entry</tt> interface.
             *
             * @param o object to be compared for equality with this map entry
             * @return <tt>true</tt> if the specified object is equal to this map
             *         entry
             */
            boolean equals(Object o);
    
            /**
             * Returns the hash code value for this map entry.  The hash code
             * of a map entry <tt>e</tt> is defined to be: <pre>
             *     (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
             *     (e.getValue()==null ? 0 : e.getValue().hashCode())
             * </pre>
             * This ensures that <tt>e1.equals(e2)</tt> implies that
             * <tt>e1.hashCode()==e2.hashCode()</tt> for any two Entries
             * <tt>e1</tt> and <tt>e2</tt>, as required by the general
             * contract of <tt>Object.hashCode</tt>.
             *
             * @return the hash code value for this map entry
             * @see Object#hashCode()
             * @see Object#equals(Object)
             * @see #equals(Object)
             */
            int hashCode();
    
            /**
             * Returns a comparator that compares {@link Map.Entry} in natural order on key.
             *
             * <p>The returned comparator is serializable and throws {@link
             * NullPointerException} when comparing an entry with a null key.
             *
             * @param  <K> the {@link Comparable} type of then map keys
             * @param  <V> the type of the map values
             * @return a comparator that compares {@link Map.Entry} in natural order on key.
             * @see Comparable
             * @since 1.8
             */
            public static <K extends Comparable<? super K>, V> Comparator<Map.Entry<K,V>> comparingByKey() {
                return (Comparator<Map.Entry<K, V>> & Serializable)
                    (c1, c2) -> c1.getKey().compareTo(c2.getKey());
            }
    
            /**
             * Returns a comparator that compares {@link Map.Entry} in natural order on value.
             *
             * <p>The returned comparator is serializable and throws {@link
             * NullPointerException} when comparing an entry with null values.
             *
             * @param <K> the type of the map keys
             * @param <V> the {@link Comparable} type of the map values
             * @return a comparator that compares {@link Map.Entry} in natural order on value.
             * @see Comparable
             * @since 1.8
             */
            public static <K, V extends Comparable<? super V>> Comparator<Map.Entry<K,V>> comparingByValue() {
                return (Comparator<Map.Entry<K, V>> & Serializable)
                    (c1, c2) -> c1.getValue().compareTo(c2.getValue());
            }
    
            /**
             * Returns a comparator that compares {@link Map.Entry} by key using the given
             * {@link Comparator}.
             *
             * <p>The returned comparator is serializable if the specified comparator
             * is also serializable.
             *
             * @param  <K> the type of the map keys
             * @param  <V> the type of the map values
             * @param  cmp the key {@link Comparator}
             * @return a comparator that compares {@link Map.Entry} by the key.
             * @since 1.8
             */
            public static <K, V> Comparator<Map.Entry<K, V>> comparingByKey(Comparator<? super K> cmp) {
                Objects.requireNonNull(cmp);
                return (Comparator<Map.Entry<K, V>> & Serializable)
                    (c1, c2) -> cmp.compare(c1.getKey(), c2.getKey());
            }
    
            /**
             * Returns a comparator that compares {@link Map.Entry} by value using the given
             * {@link Comparator}.
             *
             * <p>The returned comparator is serializable if the specified comparator
             * is also serializable.
             *
             * @param  <K> the type of the map keys
             * @param  <V> the type of the map values
             * @param  cmp the value {@link Comparator}
             * @return a comparator that compares {@link Map.Entry} by the value.
             * @since 1.8
             */
            public static <K, V> Comparator<Map.Entry<K, V>> comparingByValue(Comparator<? super V> cmp) {
                Objects.requireNonNull(cmp);
                return (Comparator<Map.Entry<K, V>> & Serializable)
                    (c1, c2) -> cmp.compare(c1.getValue(), c2.getValue());
            }
        }
    
        // Comparison and hashing
    
        /**
         * Compares the specified object with this map for equality.  Returns
         * <tt>true</tt> if the given object is also a map and the two maps
         * represent the same mappings.  More formally, two maps <tt>m1</tt> and
         * <tt>m2</tt> represent the same mappings if
         * <tt>m1.entrySet().equals(m2.entrySet())</tt>.  This ensures that the
         * <tt>equals</tt> method works properly across different implementations
         * of the <tt>Map</tt> interface.
         *
         * @param o object to be compared for equality with this map
         * @return <tt>true</tt> if the specified object is equal to this map
         */
        boolean equals(Object o);
    
        /**
         * Returns the hash code value for this map.  The hash code of a map is
         * defined to be the sum of the hash codes of each entry in the map's
         * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
         * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two maps
         * <tt>m1</tt> and <tt>m2</tt>, as required by the general contract of
         * {@link Object#hashCode}.
         *
         * @return the hash code value for this map
         * @see Map.Entry#hashCode()
         * @see Object#equals(Object)
         * @see #equals(Object)
         */
        int hashCode();
    
        // Defaultable methods
    
        /**
         * Returns the value to which the specified key is mapped, or
         * {@code defaultValue} if this map contains no mapping for the key.
         *
         * @implSpec
         * The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
         *
         * @param key the key whose associated value is to be returned
         * @param defaultValue the default mapping of the key
         * @return the value to which the specified key is mapped, or
         * {@code defaultValue} if this map contains no mapping for the key
         * @throws ClassCastException if the key is of an inappropriate type for
         * this map
         * (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if the specified key is null and this map
         * does not permit null keys
         * (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @since 1.8
         */
        default V getOrDefault(Object key, V defaultValue) {
            V v;
            return (((v = get(key)) != null) || containsKey(key))
                ? v
                : defaultValue;
        }
    
        /**
         * Performs the given action for each entry in this map until all entries
         * have been processed or the action throws an exception.   Unless
         * otherwise specified by the implementing class, actions are performed in
         * the order of entry set iteration (if an iteration order is specified.)
         * Exceptions thrown by the action are relayed to the caller.
         *
         * @implSpec
         * The default implementation is equivalent to, for this {@code map}:
         * <pre> {@code
         * for (Map.Entry<K, V> entry : map.entrySet())
         *     action.accept(entry.getKey(), entry.getValue());
         * }</pre>
         *
         * The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
         *
         * @param action The action to be performed for each entry
         * @throws NullPointerException if the specified action is null
         * @throws ConcurrentModificationException if an entry is found to be
         * removed during iteration
         * @since 1.8
         */
        default void forEach(BiConsumer<? super K, ? super V> action) {
            Objects.requireNonNull(action);
            for (Map.Entry<K, V> entry : entrySet()) {
                K k;
                V v;
                try {
                    k = entry.getKey();
                    v = entry.getValue();
                } catch(IllegalStateException ise) {
                    // this usually means the entry is no longer in the map.
                    throw new ConcurrentModificationException(ise);
                }
                action.accept(k, v);
            }
        }
    
        /**
         * Replaces each entry's value with the result of invoking the given
         * function on that entry until all entries have been processed or the
         * function throws an exception.  Exceptions thrown by the function are
         * relayed to the caller.
         *
         * @implSpec
         * <p>The default implementation is equivalent to, for this {@code map}:
         * <pre> {@code
         * for (Map.Entry<K, V> entry : map.entrySet())
         *     entry.setValue(function.apply(entry.getKey(), entry.getValue()));
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
         *
         * @param function the function to apply to each entry
         * @throws UnsupportedOperationException if the {@code set} operation
         * is not supported by this map's entry set iterator.
         * @throws ClassCastException if the class of a replacement value
         * prevents it from being stored in this map
         * @throws NullPointerException if the specified function is null, or the
         * specified replacement value is null, and this map does not permit null
         * values
         * @throws ClassCastException if a replacement value is of an inappropriate
         *         type for this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if function or a replacement value is null,
         *         and this map does not permit null keys or values
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws IllegalArgumentException if some property of a replacement value
         *         prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ConcurrentModificationException if an entry is found to be
         * removed during iteration
         * @since 1.8
         */
        default void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            Objects.requireNonNull(function);
            for (Map.Entry<K, V> entry : entrySet()) {
                K k;
                V v;
                try {
                    k = entry.getKey();
                    v = entry.getValue();
                } catch(IllegalStateException ise) {
                    // this usually means the entry is no longer in the map.
                    throw new ConcurrentModificationException(ise);
                }
    
                // ise thrown from function is not a cme.
                v = function.apply(k, v);
    
                try {
                    entry.setValue(v);
                } catch(IllegalStateException ise) {
                    // this usually means the entry is no longer in the map.
                    throw new ConcurrentModificationException(ise);
                }
            }
        }
    
        /**
         * If the specified key is not already associated with a value (or is mapped
         * to {@code null}) associates it with the given value and returns
         * {@code null}, else returns the current value.
         *
         * @implSpec
         * The default implementation is equivalent to, for this {@code
         * map}:
         *
         * <pre> {@code
         * V v = map.get(key);
         * if (v == null)
         *     v = map.put(key, value);
         *
         * return v;
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with the specified key, or
         *         {@code null} if there was no mapping for the key.
         *         (A {@code null} return can also indicate that the map
         *         previously associated {@code null} with the key,
         *         if the implementation supports null values.)
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the key or value is of an inappropriate
         *         type for this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if the specified key or value is null,
         *         and this map does not permit null keys or values
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws IllegalArgumentException if some property of the specified key
         *         or value prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @since 1.8
         */
        default V putIfAbsent(K key, V value) {
            V v = get(key);
            if (v == null) {
                v = put(key, value);
            }
    
            return v;
        }
    
        /**
         * Removes the entry for the specified key only if it is currently
         * mapped to the specified value.
         *
         * @implSpec
         * The default implementation is equivalent to, for this {@code map}:
         *
         * <pre> {@code
         * if (map.containsKey(key) && Objects.equals(map.get(key), value)) {
         *     map.remove(key);
         *     return true;
         * } else
         *     return false;
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
         *
         * @param key key with which the specified value is associated
         * @param value value expected to be associated with the specified key
         * @return {@code true} if the value was removed
         * @throws UnsupportedOperationException if the {@code remove} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the key or value is of an inappropriate
         *         type for this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if the specified key or value is null,
         *         and this map does not permit null keys or values
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @since 1.8
         */
        default boolean remove(Object key, Object value) {
            Object curValue = get(key);
            if (!Objects.equals(curValue, value) ||
                (curValue == null && !containsKey(key))) {
                return false;
            }
            remove(key);
            return true;
        }
    
        /**
         * Replaces the entry for the specified key only if currently
         * mapped to the specified value.
         *
         * @implSpec
         * The default implementation is equivalent to, for this {@code map}:
         *
         * <pre> {@code
         * if (map.containsKey(key) && Objects.equals(map.get(key), value)) {
         *     map.put(key, newValue);
         *     return true;
         * } else
         *     return false;
         * }</pre>
         *
         * The default implementation does not throw NullPointerException
         * for maps that do not support null values if oldValue is null unless
         * newValue is also null.
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
         *
         * @param key key with which the specified value is associated
         * @param oldValue value expected to be associated with the specified key
         * @param newValue value to be associated with the specified key
         * @return {@code true} if the value was replaced
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the class of a specified key or value
         *         prevents it from being stored in this map
         * @throws NullPointerException if a specified key or newValue is null,
         *         and this map does not permit null keys or values
         * @throws NullPointerException if oldValue is null and this map does not
         *         permit null values
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws IllegalArgumentException if some property of a specified key
         *         or value prevents it from being stored in this map
         * @since 1.8
         */
        default boolean replace(K key, V oldValue, V newValue) {
            Object curValue = get(key);
            if (!Objects.equals(curValue, oldValue) ||
                (curValue == null && !containsKey(key))) {
                return false;
            }
            put(key, newValue);
            return true;
        }
    
        /**
         * Replaces the entry for the specified key only if it is
         * currently mapped to some value.
         *
         * @implSpec
         * The default implementation is equivalent to, for this {@code map}:
         *
         * <pre> {@code
         * if (map.containsKey(key)) {
         *     return map.put(key, value);
         * } else
         *     return null;
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties.
          *
         * @param key key with which the specified value is associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with the specified key, or
         *         {@code null} if there was no mapping for the key.
         *         (A {@code null} return can also indicate that the map
         *         previously associated {@code null} with the key,
         *         if the implementation supports null values.)
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if the specified key or value is null,
         *         and this map does not permit null keys or values
         * @throws IllegalArgumentException if some property of the specified key
         *         or value prevents it from being stored in this map
         * @since 1.8
         */
        default V replace(K key, V value) {
            V curValue;
            if (((curValue = get(key)) != null) || containsKey(key)) {
                curValue = put(key, value);
            }
            return curValue;
        }
    
        /**
         * If the specified key is not already associated with a value (or is mapped
         * to {@code null}), attempts to compute its value using the given mapping
         * function and enters it into this map unless {@code null}.
         *
         * <p>If the function returns {@code null} no mapping is recorded. If
         * the function itself throws an (unchecked) exception, the
         * exception is rethrown, and no mapping is recorded.  The most
         * common usage is to construct a new object serving as an initial
         * mapped value or memoized result, as in:
         *
         * <pre> {@code
         * map.computeIfAbsent(key, k -> new Value(f(k)));
         * }</pre>
         *
         * <p>Or to implement a multi-value map, {@code Map<K,Collection<V>>},
         * supporting multiple values per key:
         *
         * <pre> {@code
         * map.computeIfAbsent(key, k -> new HashSet<V>()).add(v);
         * }</pre>
         *
         *
         * @implSpec
         * The default implementation is equivalent to the following steps for this
         * {@code map}, then returning the current value or {@code null} if now
         * absent:
         *
         * <pre> {@code
         * if (map.get(key) == null) {
         *     V newValue = mappingFunction.apply(key);
         *     if (newValue != null)
         *         map.put(key, newValue);
         * }
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties. In particular, all implementations of
         * subinterface {@link java.util.concurrent.ConcurrentMap} must document
         * whether the function is applied once atomically only if the value is not
         * present.
         *
         * @param key key with which the specified value is to be associated
         * @param mappingFunction the function to compute a value
         * @return the current (existing or computed) value associated with
         *         the specified key, or null if the computed value is null
         * @throws NullPointerException if the specified key is null and
         *         this map does not support null keys, or the mappingFunction
         *         is null
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @since 1.8
         */
        default V computeIfAbsent(K key,
                Function<? super K, ? extends V> mappingFunction) {
            Objects.requireNonNull(mappingFunction);
            V v;
            if ((v = get(key)) == null) {
                V newValue;
                if ((newValue = mappingFunction.apply(key)) != null) {
                    put(key, newValue);
                    return newValue;
                }
            }
    
            return v;
        }
    
        /**
         * If the value for the specified key is present and non-null, attempts to
         * compute a new mapping given the key and its current mapped value.
         *
         * <p>If the function returns {@code null}, the mapping is removed.  If the
         * function itself throws an (unchecked) exception, the exception is
         * rethrown, and the current mapping is left unchanged.
        *
         * @implSpec
         * The default implementation is equivalent to performing the following
         * steps for this {@code map}, then returning the current value or
         * {@code null} if now absent:
         *
         * <pre> {@code
         * if (map.get(key) != null) {
         *     V oldValue = map.get(key);
         *     V newValue = remappingFunction.apply(key, oldValue);
         *     if (newValue != null)
         *         map.put(key, newValue);
         *     else
         *         map.remove(key);
         * }
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties. In particular, all implementations of
         * subinterface {@link java.util.concurrent.ConcurrentMap} must document
         * whether the function is applied once atomically only if the value is not
         * present.
         *
         * @param key key with which the specified value is to be associated
         * @param remappingFunction the function to compute a value
         * @return the new value associated with the specified key, or null if none
         * @throws NullPointerException if the specified key is null and
         *         this map does not support null keys, or the
         *         remappingFunction is null
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @since 1.8
         */
        default V computeIfPresent(K key,
                BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            Objects.requireNonNull(remappingFunction);
            V oldValue;
            if ((oldValue = get(key)) != null) {
                V newValue = remappingFunction.apply(key, oldValue);
                if (newValue != null) {
                    put(key, newValue);
                    return newValue;
                } else {
                    remove(key);
                    return null;
                }
            } else {
                return null;
            }
        }
    
        /**
         * Attempts to compute a mapping for the specified key and its current
         * mapped value (or {@code null} if there is no current mapping). For
         * example, to either create or append a {@code String} msg to a value
         * mapping:
         *
         * <pre> {@code
         * map.compute(key, (k, v) -> (v == null) ? msg : v.concat(msg))}</pre>
         * (Method {@link #merge merge()} is often simpler to use for such purposes.)
         *
         * <p>If the function returns {@code null}, the mapping is removed (or
         * remains absent if initially absent).  If the function itself throws an
         * (unchecked) exception, the exception is rethrown, and the current mapping
         * is left unchanged.
         *
         * @implSpec
         * The default implementation is equivalent to performing the following
         * steps for this {@code map}, then returning the current value or
         * {@code null} if absent:
         *
         * <pre> {@code
         * V oldValue = map.get(key);
         * V newValue = remappingFunction.apply(key, oldValue);
         * if (oldValue != null ) {
         *    if (newValue != null)
         *       map.put(key, newValue);
         *    else
         *       map.remove(key);
         * } else {
         *    if (newValue != null)
         *       map.put(key, newValue);
         *    else
         *       return null;
         * }
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties. In particular, all implementations of
         * subinterface {@link java.util.concurrent.ConcurrentMap} must document
         * whether the function is applied once atomically only if the value is not
         * present.
         *
         * @param key key with which the specified value is to be associated
         * @param remappingFunction the function to compute a value
         * @return the new value associated with the specified key, or null if none
         * @throws NullPointerException if the specified key is null and
         *         this map does not support null keys, or the
         *         remappingFunction is null
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @since 1.8
         */
        default V compute(K key,
                BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            Objects.requireNonNull(remappingFunction);
            V oldValue = get(key);
    
            V newValue = remappingFunction.apply(key, oldValue);
            if (newValue == null) {
                // delete mapping
                if (oldValue != null || containsKey(key)) {
                    // something to remove
                    remove(key);
                    return null;
                } else {
                    // nothing to do. Leave things as they were.
                    return null;
                }
            } else {
                // add or replace old mapping
                put(key, newValue);
                return newValue;
            }
        }
    
        /**
         * If the specified key is not already associated with a value or is
         * associated with null, associates it with the given non-null value.
         * Otherwise, replaces the associated value with the results of the given
         * remapping function, or removes if the result is {@code null}. This
         * method may be of use when combining multiple mapped values for a key.
         * For example, to either create or append a {@code String msg} to a
         * value mapping:
         *
         * <pre> {@code
         * map.merge(key, msg, String::concat)
         * }</pre>
         *
         * <p>If the function returns {@code null} the mapping is removed.  If the
         * function itself throws an (unchecked) exception, the exception is
         * rethrown, and the current mapping is left unchanged.
         *
         * @implSpec
         * The default implementation is equivalent to performing the following
         * steps for this {@code map}, then returning the current value or
         * {@code null} if absent:
         *
         * <pre> {@code
         * V oldValue = map.get(key);
         * V newValue = (oldValue == null) ? value :
         *              remappingFunction.apply(oldValue, value);
         * if (newValue == null)
         *     map.remove(key);
         * else
         *     map.put(key, newValue);
         * }</pre>
         *
         * <p>The default implementation makes no guarantees about synchronization
         * or atomicity properties of this method. Any implementation providing
         * atomicity guarantees must override this method and document its
         * concurrency properties. In particular, all implementations of
         * subinterface {@link java.util.concurrent.ConcurrentMap} must document
         * whether the function is applied once atomically only if the value is not
         * present.
         *
         * @param key key with which the resulting value is to be associated
         * @param value the non-null value to be merged with the existing value
         *        associated with the key or, if no existing value or a null value
         *        is associated with the key, to be associated with the key
         * @param remappingFunction the function to recompute a value if present
         * @return the new value associated with the specified key, or null if no
         *         value is associated with the key
         * @throws UnsupportedOperationException if the {@code put} operation
         *         is not supported by this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         *         (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if the specified key is null and this map
         *         does not support null keys or the value or remappingFunction is
         *         null
         * @since 1.8
         */
        default V merge(K key, V value,
                BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
            Objects.requireNonNull(remappingFunction);
            Objects.requireNonNull(value);
            V oldValue = get(key);
            V newValue = (oldValue == null) ? value :
                       remappingFunction.apply(oldValue, value);
            if(newValue == null) {
                remove(key);
            } else {
                put(key, newValue);
            }
            return newValue;
        }
    }
    

     所以,HashMap的总体结构如下:

    简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

    hashMap中具体方法

    /*
     * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     *
     * This code is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License version 2 only, as
     * published by the Free Software Foundation.  Oracle designates this
     * particular file as subject to the "Classpath" exception as provided
     * by Oracle in the LICENSE file that accompanied this code.
     *
     * This code is distributed in the hope that it will be useful, but WITHOUT
     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     * version 2 for more details (a copy is included in the LICENSE file that
     * accompanied this code).
     *
     * You should have received a copy of the GNU General Public License version
     * 2 along with this work; if not, write to the Free Software Foundation,
     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     *
     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     * or visit www.oracle.com if you need additional information or have any
     * questions.
     */
    
    package java.util;
    
    import java.io.IOException;
    import java.io.InvalidObjectException;
    import java.io.Serializable;
    import java.lang.reflect.ParameterizedType;
    import java.lang.reflect.Type;
    import java.util.function.BiConsumer;
    import java.util.function.BiFunction;
    import java.util.function.Consumer;
    import java.util.function.Function;
    import sun.misc.SharedSecrets;
    
    /**
     * Hash table based implementation of the <tt>Map</tt> interface.  This
     * implementation provides all of the optional map operations, and permits
     * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
     * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
     * unsynchronized and permits nulls.)  This class makes no guarantees as to
     * the order of the map; in particular, it does not guarantee that the order
     * will remain constant over time.
     *
     * <p>This implementation provides constant-time performance for the basic
     * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
     * disperses the elements properly among the buckets.  Iteration over
     * collection views requires time proportional to the "capacity" of the
     * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
     * of key-value mappings).  Thus, it's very important not to set the initial
     * capacity too high (or the load factor too low) if iteration performance is
     * important.
     *
     * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
     * performance: <i>initial capacity</i> and <i>load factor</i>.  The
     * <i>capacity</i> is the number of buckets in the hash table, and the initial
     * capacity is simply the capacity at the time the hash table is created.  The
     * <i>load factor</i> is a measure of how full the hash table is allowed to
     * get before its capacity is automatically increased.  When the number of
     * entries in the hash table exceeds the product of the load factor and the
     * current capacity, the hash table is <i>rehashed</i> (that is, internal data
     * structures are rebuilt) so that the hash table has approximately twice the
     * number of buckets.
     *
     * <p>As a general rule, the default load factor (.75) offers a good
     * tradeoff between time and space costs.  Higher values decrease the
     * space overhead but increase the lookup cost (reflected in most of
     * the operations of the <tt>HashMap</tt> class, including
     * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
     * the map and its load factor should be taken into account when
     * setting its initial capacity, so as to minimize the number of
     * rehash operations.  If the initial capacity is greater than the
     * maximum number of entries divided by the load factor, no rehash
     * operations will ever occur.
     *
     * <p>If many mappings are to be stored in a <tt>HashMap</tt>
     * instance, creating it with a sufficiently large capacity will allow
     * the mappings to be stored more efficiently than letting it perform
     * automatic rehashing as needed to grow the table.  Note that using
     * many keys with the same {@code hashCode()} is a sure way to slow
     * down performance of any hash table. To ameliorate impact, when keys
     * are {@link Comparable}, this class may use comparison order among
     * keys to help break ties.
     *
     * <p><strong>Note that this implementation is not synchronized.</strong>
     * If multiple threads access a hash map concurrently, and at least one of
     * the threads modifies the map structurally, it <i>must</i> be
     * synchronized externally.  (A structural modification is any operation
     * that adds or deletes one or more mappings; merely changing the value
     * associated with a key that an instance already contains is not a
     * structural modification.)  This is typically accomplished by
     * synchronizing on some object that naturally encapsulates the map.
     *
     * If no such object exists, the map should be "wrapped" using the
     * {@link Collections#synchronizedMap Collections.synchronizedMap}
     * method.  This is best done at creation time, to prevent accidental
     * unsynchronized access to the map:<pre>
     *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
     *
     * <p>The iterators returned by all of this class's "collection view methods"
     * are <i>fail-fast</i>: if the map is structurally modified at any time after
     * the iterator is created, in any way except through the iterator's own
     * <tt>remove</tt> method, the iterator will throw a
     * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
     * modification, the iterator fails quickly and cleanly, rather than risking
     * arbitrary, non-deterministic behavior at an undetermined time in the
     * future.
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness: <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @param <K> the type of keys maintained by this map
     * @param <V> the type of mapped values
     *
     * @author  Doug Lea
     * @author  Josh Bloch
     * @author  Arthur van Hoff
     * @author  Neal Gafter
     * @see     Object#hashCode()
     * @see     Collection
     * @see     Map
     * @see     TreeMap
     * @see     Hashtable
     * @since   1.2
     */
    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable {
    
        private static final long serialVersionUID = 362498820763181265L;
    
        /*
         * Implementation notes.
         *
         * This map usually acts as a binned (bucketed) hash table, but
         * when bins get too large, they are transformed into bins of
         * TreeNodes, each structured similarly to those in
         * java.util.TreeMap. Most methods try to use normal bins, but
         * relay to TreeNode methods when applicable (simply by checking
         * instanceof a node).  Bins of TreeNodes may be traversed and
         * used like any others, but additionally support faster lookup
         * when overpopulated. However, since the vast majority of bins in
         * normal use are not overpopulated, checking for existence of
         * tree bins may be delayed in the course of table methods.
         *
         * Tree bins (i.e., bins whose elements are all TreeNodes) are
         * ordered primarily by hashCode, but in the case of ties, if two
         * elements are of the same "class C implements Comparable<C>",
         * type then their compareTo method is used for ordering. (We
         * conservatively check generic types via reflection to validate
         * this -- see method comparableClassFor).  The added complexity
         * of tree bins is worthwhile in providing worst-case O(log n)
         * operations when keys either have distinct hashes or are
         * orderable, Thus, performance degrades gracefully under
         * accidental or malicious usages in which hashCode() methods
         * return values that are poorly distributed, as well as those in
         * which many keys share a hashCode, so long as they are also
         * Comparable. (If neither of these apply, we may waste about a
         * factor of two in time and space compared to taking no
         * precautions. But the only known cases stem from poor user
         * programming practices that are already so slow that this makes
         * little difference.)
         *
         * Because TreeNodes are about twice the size of regular nodes, we
         * use them only when bins contain enough nodes to warrant use
         * (see TREEIFY_THRESHOLD). And when they become too small (due to
         * removal or resizing) they are converted back to plain bins.  In
         * usages with well-distributed user hashCodes, tree bins are
         * rarely used.  Ideally, under random hashCodes, the frequency of
         * nodes in bins follows a Poisson distribution
         * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
         * parameter of about 0.5 on average for the default resizing
         * threshold of 0.75, although with a large variance because of
         * resizing granularity. Ignoring variance, the expected
         * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
         * factorial(k)). The first values are:
         *
         * 0:    0.60653066
         * 1:    0.30326533
         * 2:    0.07581633
         * 3:    0.01263606
         * 4:    0.00157952
         * 5:    0.00015795
         * 6:    0.00001316
         * 7:    0.00000094
         * 8:    0.00000006
         * more: less than 1 in ten million
         *
         * The root of a tree bin is normally its first node.  However,
         * sometimes (currently only upon Iterator.remove), the root might
         * be elsewhere, but can be recovered following parent links
         * (method TreeNode.root()).
         *
         * All applicable internal methods accept a hash code as an
         * argument (as normally supplied from a public method), allowing
         * them to call each other without recomputing user hashCodes.
         * Most internal methods also accept a "tab" argument, that is
         * normally the current table, but may be a new or old one when
         * resizing or converting.
         *
         * When bin lists are treeified, split, or untreeified, we keep
         * them in the same relative access/traversal order (i.e., field
         * Node.next) to better preserve locality, and to slightly
         * simplify handling of splits and traversals that invoke
         * iterator.remove. When using comparators on insertion, to keep a
         * total ordering (or as close as is required here) across
         * rebalancings, we compare classes and identityHashCodes as
         * tie-breakers.
         *
         * The use and transitions among plain vs tree modes is
         * complicated by the existence of subclass LinkedHashMap. See
         * below for hook methods defined to be invoked upon insertion,
         * removal and access that allow LinkedHashMap internals to
         * otherwise remain independent of these mechanics. (This also
         * requires that a map instance be passed to some utility methods
         * that may create new nodes.)
         *
         * The concurrent-programming-like SSA-based coding style helps
         * avoid aliasing errors amid all of the twisty pointer operations.
         */
    
        /**
         * The default initial capacity - MUST be a power of two.
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * The load factor used when none specified in constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * The bin count threshold for using a tree rather than list for a
         * bin.  Bins are converted to trees when adding an element to a
         * bin with at least this many nodes. The value must be greater
         * than 2 and should be at least 8 to mesh with assumptions in
         * tree removal about conversion back to plain bins upon
         * shrinkage.
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * The smallest table capacity for which bins may be treeified.
         * (Otherwise the table is resized if too many nodes in a bin.)
         * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
         * between resizing and treeification thresholds.
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        /**
         * Basic hash bin node, used for most entries.  (See below for
         * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
         */
        static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey()        { return key; }
            public final V getValue()      { return value; }
            public final String toString() { return key + "=" + value; }
    
            public final int hashCode() {
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
                if (o == this)
                    return true;
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                    if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }
    
        /* ---------------- Static utilities -------------- */
    
        /**
         * Computes key.hashCode() and spreads (XORs) higher bits of hash
         * to lower.  Because the table uses power-of-two masking, sets of
         * hashes that vary only in bits above the current mask will
         * always collide. (Among known examples are sets of Float keys
         * holding consecutive whole numbers in small tables.)  So we
         * apply a transform that spreads the impact of higher bits
         * downward. There is a tradeoff between speed, utility, and
         * quality of bit-spreading. Because many common sets of hashes
         * are already reasonably distributed (so don't benefit from
         * spreading), and because we use trees to handle large sets of
         * collisions in bins, we just XOR some shifted bits in the
         * cheapest possible way to reduce systematic lossage, as well as
         * to incorporate impact of the highest bits that would otherwise
         * never be used in index calculations because of table bounds.
         */
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
    
        /**
         * Returns x's Class if it is of the form "class C implements
         * Comparable<C>", else null.
         */
        static Class<?> comparableClassFor(Object x) {
            if (x instanceof Comparable) {
                Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
                if ((c = x.getClass()) == String.class) // bypass checks
                    return c;
                if ((ts = c.getGenericInterfaces()) != null) {
                    for (int i = 0; i < ts.length; ++i) {
                        if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType)t).getRawType() ==
                             Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                            return c;
                    }
                }
            }
            return null;
        }
    
        /**
         * Returns k.compareTo(x) if x matches kc (k's screened comparable
         * class), else 0.
         */
        @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
        static int compareComparables(Class<?> kc, Object k, Object x) {
            return (x == null || x.getClass() != kc ? 0 :
                    ((Comparable)k).compareTo(x));
        }
    
        /**
         * Returns a power of two size for the given target capacity.
         */
        static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    
        /* ---------------- Fields -------------- */
    
        /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         */
        transient Node<K,V>[] table;
    
        /**
         * Holds cached entrySet(). Note that AbstractMap fields are used
         * for keySet() and values().
         */
        transient Set<Map.Entry<K,V>> entrySet;
    
        /**
         * The number of key-value mappings contained in this map.
         */
        transient int size;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         */
        transient int modCount;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         *
         * @serial
         */
        // (The javadoc description is true upon serialization.
        // Additionally, if the table array has not been allocated, this
        // field holds the initial array capacity, or zero signifying
        // DEFAULT_INITIAL_CAPACITY.)
        int threshold;
    
        /**
         * The load factor for the hash table.
         *
         * @serial
         */
        final float loadFactor;
    
        /* ---------------- Public operations -------------- */
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
        /**
         * Implements Map.putAll and Map constructor.
         *
         * @param m the map
         * @param evict false when initially constructing this map, else
         * true (relayed to method afterNodeInsertion).
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size
                    float ft = ((float)s / loadFactor) + 1.0F;
                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                             (int)ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        threshold = tableSizeFor(t);
                }
                else if (s > threshold)
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
    
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains no key-value mappings.
         *
         * @return <tt>true</tt> if this map contains no key-value mappings
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.get and related methods.
         *
         * @param hash hash for key
         * @param key the key
         * @return the node, or null if none
         */
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         *
         * @param   key   The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         * key.
         */
        public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods.
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    
        /**
         * Initializes or doubles table size.  If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         *
         * @return the table
         */
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    
        /**
         * Replaces all linked nodes in bin at index for given hash unless
         * table is too small, in which case resizes instead.
         */
        final void treeifyBin(Node<K,V>[] tab, int hash) {
            int n, index; Node<K,V> e;
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize();
            else if ((e = tab[index = (n - 1) & hash]) != null) {
                TreeNode<K,V> hd = null, tl = null;
                do {
                    TreeNode<K,V> p = replacementTreeNode(e, null);
                    if (tl == null)
                        hd = p;
                    else {
                        p.prev = tl;
                        tl.next = p;
                    }
                    tl = p;
                } while ((e = e.next) != null);
                if ((tab[index] = hd) != null)
                    hd.treeify(tab);
            }
        }
    
        /**
         * Copies all of the mappings from the specified map to this map.
         * These mappings will replace any mappings that this map had for
         * any of the keys currently in the specified map.
         *
         * @param m mappings to be stored in this map
         * @throws NullPointerException if the specified map is null
         */
        public void putAll(Map<? extends K, ? extends V> m) {
            putMapEntries(m, true);
        }
    
        /**
         * Removes the mapping for the specified key from this map if present.
         *
         * @param  key key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
    
        /**
         * Implements Map.remove and related methods.
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to match if matchValue, else ignored
         * @param matchValue if true only remove if value is equal
         * @param movable if false do not move other nodes while removing
         * @return the node, or null if none
         */
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
                Node<K,V> node = null, e; K k; V v;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }
    
        /**
         * Removes all of the mappings from this map.
         * The map will be empty after this call returns.
         */
        public void clear() {
            Node<K,V>[] tab;
            modCount++;
            if ((tab = table) != null && size > 0) {
                size = 0;
                for (int i = 0; i < tab.length; ++i)
                    tab[i] = null;
            }
        }
    
        /**
         * Returns <tt>true</tt> if this map maps one or more keys to the
         * specified value.
         *
         * @param value value whose presence in this map is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         *         specified value
         */
        public boolean containsValue(Object value) {
            Node<K,V>[] tab; V v;
            if ((tab = table) != null && size > 0) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        if ((v = e.value) == value ||
                            (value != null && value.equals(v)))
                            return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation), the results of
         * the iteration are undefined.  The set supports element removal,
         * which removes the corresponding mapping from the map, via the
         * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
         * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
         * operations.
         *
         * @return a set view of the keys contained in this map
         */
        public Set<K> keySet() {
            Set<K> ks = keySet;
            if (ks == null) {
                ks = new KeySet();
                keySet = ks;
            }
            return ks;
        }
    
        final class KeySet extends AbstractSet<K> {
            public final int size()                 { return size; }
            public final void clear()               { HashMap.this.clear(); }
            public final Iterator<K> iterator()     { return new KeyIterator(); }
            public final boolean contains(Object o) { return containsKey(o); }
            public final boolean remove(Object key) {
                return removeNode(hash(key), key, null, false, true) != null;
            }
            public final Spliterator<K> spliterator() {
                return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
            public final void forEach(Consumer<? super K> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.key);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa.  If the map is
         * modified while an iteration over the collection is in progress
         * (except through the iterator's own <tt>remove</tt> operation),
         * the results of the iteration are undefined.  The collection
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
         * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
         * support the <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a view of the values contained in this map
         */
        public Collection<V> values() {
            Collection<V> vs = values;
            if (vs == null) {
                vs = new Values();
                values = vs;
            }
            return vs;
        }
    
        final class Values extends AbstractCollection<V> {
            public final int size()                 { return size; }
            public final void clear()               { HashMap.this.clear(); }
            public final Iterator<V> iterator()     { return new ValueIterator(); }
            public final boolean contains(Object o) { return containsValue(o); }
            public final Spliterator<V> spliterator() {
                return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
            public final void forEach(Consumer<? super V> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.value);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation, or through the
         * <tt>setValue</tt> operation on a map entry returned by the
         * iterator) the results of the iteration are undefined.  The set
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
         * <tt>clear</tt> operations.  It does not support the
         * <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a set view of the mappings contained in this map
         */
        public Set<Map.Entry<K,V>> entrySet() {
            Set<Map.Entry<K,V>> es;
            return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
        }
    
        final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
            public final int size()                 { return size; }
            public final void clear()               { HashMap.this.clear(); }
            public final Iterator<Map.Entry<K,V>> iterator() {
                return new EntryIterator();
            }
            public final boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Node<K,V> candidate = getNode(hash(key), key);
                return candidate != null && candidate.equals(e);
            }
            public final boolean remove(Object o) {
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                    Object key = e.getKey();
                    Object value = e.getValue();
                    return removeNode(hash(key), key, value, true, true) != null;
                }
                return false;
            }
            public final Spliterator<Map.Entry<K,V>> spliterator() {
                return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
            public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        // Overrides of JDK8 Map extension methods
    
        @Override
        public V getOrDefault(Object key, V defaultValue) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
        }
    
        @Override
        public V putIfAbsent(K key, V value) {
            return putVal(hash(key), key, value, true, true);
        }
    
        @Override
        public boolean remove(Object key, Object value) {
            return removeNode(hash(key), key, value, true, true) != null;
        }
    
        @Override
        public boolean replace(K key, V oldValue, V newValue) {
            Node<K,V> e; V v;
            if ((e = getNode(hash(key), key)) != null &&
                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
                e.value = newValue;
                afterNodeAccess(e);
                return true;
            }
            return false;
        }
    
        @Override
        public V replace(K key, V value) {
            Node<K,V> e;
            if ((e = getNode(hash(key), key)) != null) {
                V oldValue = e.value;
                e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
            return null;
        }
    
        @Override
        public V computeIfAbsent(K key,
                                 Function<? super K, ? extends V> mappingFunction) {
            if (mappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K,V>[] tab; Node<K,V> first; int n, i;
            int binCount = 0;
            TreeNode<K,V> t = null;
            Node<K,V> old = null;
            if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                else {
                    Node<K,V> e = first; K k;
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
                V oldValue;
                if (old != null && (oldValue = old.value) != null) {
                    afterNodeAccess(old);
                    return oldValue;
                }
            }
            V v = mappingFunction.apply(key);
            if (v == null) {
                return null;
            } else if (old != null) {
                old.value = v;
                afterNodeAccess(old);
                return v;
            }
            else if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
            return v;
        }
    
        public V computeIfPresent(K key,
                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (remappingFunction == null)
                throw new NullPointerException();
            Node<K,V> e; V oldValue;
            int hash = hash(key);
            if ((e = getNode(hash, key)) != null &&
                (oldValue = e.value) != null) {
                V v = remappingFunction.apply(key, oldValue);
                if (v != null) {
                    e.value = v;
                    afterNodeAccess(e);
                    return v;
                }
                else
                    removeNode(hash, key, null, false, true);
            }
            return null;
        }
    
        @Override
        public V compute(K key,
                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K,V>[] tab; Node<K,V> first; int n, i;
            int binCount = 0;
            TreeNode<K,V> t = null;
            Node<K,V> old = null;
            if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                else {
                    Node<K,V> e = first; K k;
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            V oldValue = (old == null) ? null : old.value;
            V v = remappingFunction.apply(key, oldValue);
            if (old != null) {
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                }
                else
                    removeNode(hash, key, null, false, true);
            }
            else if (v != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, v);
                else {
                    tab[i] = newNode(hash, key, v, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return v;
        }
    
        @Override
        public V merge(K key, V value,
                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
            if (value == null)
                throw new NullPointerException();
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K,V>[] tab; Node<K,V> first; int n, i;
            int binCount = 0;
            TreeNode<K,V> t = null;
            Node<K,V> old = null;
            if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                else {
                    Node<K,V> e = first; K k;
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            if (old != null) {
                V v;
                if (old.value != null)
                    v = remappingFunction.apply(old.value, value);
                else
                    v = value;
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                }
                else
                    removeNode(hash, key, null, false, true);
                return v;
            }
            if (value != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, value);
                else {
                    tab[i] = newNode(hash, key, value, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return value;
        }
    
        @Override
        public void forEach(BiConsumer<? super K, ? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key, e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        @Override
        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            Node<K,V>[] tab;
            if (function == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        e.value = function.apply(e.key, e.value);
                    }
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        /* ------------------------------------------------------------ */
        // Cloning and serialization
    
        /**
         * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
         * values themselves are not cloned.
         *
         * @return a shallow copy of this map
         */
        @SuppressWarnings("unchecked")
        @Override
        public Object clone() {
            HashMap<K,V> result;
            try {
                result = (HashMap<K,V>)super.clone();
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
            result.reinitialize();
            result.putMapEntries(this, false);
            return result;
        }
    
        // These methods are also used when serializing HashSets
        final float loadFactor() { return loadFactor; }
        final int capacity() {
            return (table != null) ? table.length :
                (threshold > 0) ? threshold :
                DEFAULT_INITIAL_CAPACITY;
        }
    
        /**
         * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
         * serialize it).
         *
         * @serialData The <i>capacity</i> of the HashMap (the length of the
         *             bucket array) is emitted (int), followed by the
         *             <i>size</i> (an int, the number of key-value
         *             mappings), followed by the key (Object) and value (Object)
         *             for each key-value mapping.  The key-value mappings are
         *             emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
            int buckets = capacity();
            // Write out the threshold, loadfactor, and any hidden stuff
            s.defaultWriteObject();
            s.writeInt(buckets);
            s.writeInt(size);
            internalWriteEntries(s);
        }
    
        /**
         * Reconstitutes this map from a stream (that is, deserializes it).
         * @param s the stream
         * @throws ClassNotFoundException if the class of a serialized object
         *         could not be found
         * @throws IOException if an I/O error occurs
         */
        private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
            // Read in the threshold (ignored), loadfactor, and any hidden stuff
            s.defaultReadObject();
            reinitialize();
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new InvalidObjectException("Illegal load factor: " +
                                                 loadFactor);
            s.readInt();                // Read and ignore number of buckets
            int mappings = s.readInt(); // Read number of mappings (size)
            if (mappings < 0)
                throw new InvalidObjectException("Illegal mappings count: " +
                                                 mappings);
            else if (mappings > 0) { // (if zero, use defaults)
                // Size the table using given load factor only if within
                // range of 0.25...4.0
                float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
                float fc = (float)mappings / lf + 1.0f;
                int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                           DEFAULT_INITIAL_CAPACITY :
                           (fc >= MAXIMUM_CAPACITY) ?
                           MAXIMUM_CAPACITY :
                           tableSizeFor((int)fc));
                float ft = (float)cap * lf;
                threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                             (int)ft : Integer.MAX_VALUE);
    
                // Check Map.Entry[].class since it's the nearest public type to
                // what we're actually creating.
                SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
                @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
                table = tab;
    
                // Read the keys and values, and put the mappings in the HashMap
                for (int i = 0; i < mappings; i++) {
                    @SuppressWarnings("unchecked")
                        K key = (K) s.readObject();
                    @SuppressWarnings("unchecked")
                        V value = (V) s.readObject();
                    putVal(hash(key), key, value, false, false);
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // iterators
    
        abstract class HashIterator {
            Node<K,V> next;        // next entry to return
            Node<K,V> current;     // current entry
            int expectedModCount;  // for fast-fail
            int index;             // current slot
    
            HashIterator() {
                expectedModCount = modCount;
                Node<K,V>[] t = table;
                current = next = null;
                index = 0;
                if (t != null && size > 0) { // advance to first entry
                    do {} while (index < t.length && (next = t[index++]) == null);
                }
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Node<K,V> nextNode() {
                Node<K,V>[] t;
                Node<K,V> e = next;
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (e == null)
                    throw new NoSuchElementException();
                if ((next = (current = e).next) == null && (t = table) != null) {
                    do {} while (index < t.length && (next = t[index++]) == null);
                }
                return e;
            }
    
            public final void remove() {
                Node<K,V> p = current;
                if (p == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                current = null;
                K key = p.key;
                removeNode(hash(key), key, null, false, false);
                expectedModCount = modCount;
            }
        }
    
        final class KeyIterator extends HashIterator
            implements Iterator<K> {
            public final K next() { return nextNode().key; }
        }
    
        final class ValueIterator extends HashIterator
            implements Iterator<V> {
            public final V next() { return nextNode().value; }
        }
    
        final class EntryIterator extends HashIterator
            implements Iterator<Map.Entry<K,V>> {
            public final Map.Entry<K,V> next() { return nextNode(); }
        }
    
        /* ------------------------------------------------------------ */
        // spliterators
    
        static class HashMapSpliterator<K,V> {
            final HashMap<K,V> map;
            Node<K,V> current;          // current node
            int index;                  // current index, modified on advance/split
            int fence;                  // one past last index
            int est;                    // size estimate
            int expectedModCount;       // for comodification checks
    
            HashMapSpliterator(HashMap<K,V> m, int origin,
                               int fence, int est,
                               int expectedModCount) {
                this.map = m;
                this.index = origin;
                this.fence = fence;
                this.est = est;
                this.expectedModCount = expectedModCount;
            }
    
            final int getFence() { // initialize fence and size on first use
                int hi;
                if ((hi = fence) < 0) {
                    HashMap<K,V> m = map;
                    est = m.size;
                    expectedModCount = m.modCount;
                    Node<K,V>[] tab = m.table;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                return hi;
            }
    
            public final long estimateSize() {
                getFence(); // force init
                return (long) est;
            }
        }
    
        static final class KeySpliterator<K,V>
            extends HashMapSpliterator<K,V>
            implements Spliterator<K> {
            KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                           int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public KeySpliterator<K,V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                    new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                            expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super K> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K,V> m = map;
                Node<K,V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K,V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.key);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super K> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K,V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            K k = current.key;
                            current = current.next;
                            action.accept(k);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
            }
        }
    
        static final class ValueSpliterator<K,V>
            extends HashMapSpliterator<K,V>
            implements Spliterator<V> {
            ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                             int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public ValueSpliterator<K,V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                    new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                              expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super V> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K,V> m = map;
                Node<K,V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K,V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.value);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super V> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K,V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            V v = current.value;
                            current = current.next;
                            action.accept(v);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
            }
        }
    
        static final class EntrySpliterator<K,V>
            extends HashMapSpliterator<K,V>
            implements Spliterator<Map.Entry<K,V>> {
            EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                             int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public EntrySpliterator<K,V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                    new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                              expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K,V> m = map;
                Node<K,V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K,V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K,V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            Node<K,V> e = current;
                            current = current.next;
                            action.accept(e);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
            }
        }
    
        /* ------------------------------------------------------------ */
        // LinkedHashMap support
    
    
        /*
         * The following package-protected methods are designed to be
         * overridden by LinkedHashMap, but not by any other subclass.
         * Nearly all other internal methods are also package-protected
         * but are declared final, so can be used by LinkedHashMap, view
         * classes, and HashSet.
         */
    
        // Create a regular (non-tree) node
        Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
            return new Node<>(hash, key, value, next);
        }
    
        // For conversion from TreeNodes to plain nodes
        Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
            return new Node<>(p.hash, p.key, p.value, next);
        }
    
        // Create a tree bin node
        TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
            return new TreeNode<>(hash, key, value, next);
        }
    
        // For treeifyBin
        TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
            return new TreeNode<>(p.hash, p.key, p.value, next);
        }
    
        /**
         * Reset to initial default state.  Called by clone and readObject.
         */
        void reinitialize() {
            table = null;
            entrySet = null;
            keySet = null;
            values = null;
            modCount = 0;
            threshold = 0;
            size = 0;
        }
    
        // Callbacks to allow LinkedHashMap post-actions
        void afterNodeAccess(Node<K,V> p) { }
        void afterNodeInsertion(boolean evict) { }
        void afterNodeRemoval(Node<K,V> p) { }
    
        // Called only from writeObject, to ensure compatible ordering.
        void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
            Node<K,V>[] tab;
            if (size > 0 && (tab = table) != null) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        s.writeObject(e.key);
                        s.writeObject(e.value);
                    }
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // Tree bins
    
        /**
         * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
         * extends Node) so can be used as extension of either regular or
         * linked node.
         */
        static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
            TreeNode<K,V> parent;  // red-black tree links
            TreeNode<K,V> left;
            TreeNode<K,V> right;
            TreeNode<K,V> prev;    // needed to unlink next upon deletion
            boolean red;
            TreeNode(int hash, K key, V val, Node<K,V> next) {
                super(hash, key, val, next);
            }
    
            /**
             * Returns root of tree containing this node.
             */
            final TreeNode<K,V> root() {
                for (TreeNode<K,V> r = this, p;;) {
                    if ((p = r.parent) == null)
                        return r;
                    r = p;
                }
            }
    
            /**
             * Ensures that the given root is the first node of its bin.
             */
            static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
                int n;
                if (root != null && tab != null && (n = tab.length) > 0) {
                    int index = (n - 1) & root.hash;
                    TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                    if (root != first) {
                        Node<K,V> rn;
                        tab[index] = root;
                        TreeNode<K,V> rp = root.prev;
                        if ((rn = root.next) != null)
                            ((TreeNode<K,V>)rn).prev = rp;
                        if (rp != null)
                            rp.next = rn;
                        if (first != null)
                            first.prev = root;
                        root.next = first;
                        root.prev = null;
                    }
                    assert checkInvariants(root);
                }
            }
    
            /**
             * Finds the node starting at root p with the given hash and key.
             * The kc argument caches comparableClassFor(key) upon first use
             * comparing keys.
             */
            final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
                TreeNode<K,V> p = this;
                do {
                    int ph, dir; K pk;
                    TreeNode<K,V> pl = p.left, pr = p.right, q;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                              (kc = comparableClassFor(k)) != null) &&
                             (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.find(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
                return null;
            }
    
            /**
             * Calls find for root node.
             */
            final TreeNode<K,V> getTreeNode(int h, Object k) {
                return ((parent != null) ? root() : this).find(h, k, null);
            }
    
            /**
             * Tie-breaking utility for ordering insertions when equal
             * hashCodes and non-comparable. We don't require a total
             * order, just a consistent insertion rule to maintain
             * equivalence across rebalancings. Tie-breaking further than
             * necessary simplifies testing a bit.
             */
            static int tieBreakOrder(Object a, Object b) {
                int d;
                if (a == null || b == null ||
                    (d = a.getClass().getName().
                     compareTo(b.getClass().getName())) == 0)
                    d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                         -1 : 1);
                return d;
            }
    
            /**
             * Forms tree of the nodes linked from this node.
             */
            final void treeify(Node<K,V>[] tab) {
                TreeNode<K,V> root = null;
                for (TreeNode<K,V> x = this, next; x != null; x = next) {
                    next = (TreeNode<K,V>)x.next;
                    x.left = x.right = null;
                    if (root == null) {
                        x.parent = null;
                        x.red = false;
                        root = x;
                    }
                    else {
                        K k = x.key;
                        int h = x.hash;
                        Class<?> kc = null;
                        for (TreeNode<K,V> p = root;;) {
                            int dir, ph;
                            K pk = p.key;
                            if ((ph = p.hash) > h)
                                dir = -1;
                            else if (ph < h)
                                dir = 1;
                            else if ((kc == null &&
                                      (kc = comparableClassFor(k)) == null) ||
                                     (dir = compareComparables(kc, k, pk)) == 0)
                                dir = tieBreakOrder(k, pk);
    
                            TreeNode<K,V> xp = p;
                            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                x.parent = xp;
                                if (dir <= 0)
                                    xp.left = x;
                                else
                                    xp.right = x;
                                root = balanceInsertion(root, x);
                                break;
                            }
                        }
                    }
                }
                moveRootToFront(tab, root);
            }
    
            /**
             * Returns a list of non-TreeNodes replacing those linked from
             * this node.
             */
            final Node<K,V> untreeify(HashMap<K,V> map) {
                Node<K,V> hd = null, tl = null;
                for (Node<K,V> q = this; q != null; q = q.next) {
                    Node<K,V> p = map.replacementNode(q, null);
                    if (tl == null)
                        hd = p;
                    else
                        tl.next = p;
                    tl = p;
                }
                return hd;
            }
    
            /**
             * Tree version of putVal.
             */
            final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                           int h, K k, V v) {
                Class<?> kc = null;
                boolean searched = false;
                TreeNode<K,V> root = (parent != null) ? root() : this;
                for (TreeNode<K,V> p = root;;) {
                    int dir, ph; K pk;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0) {
                        if (!searched) {
                            TreeNode<K,V> q, ch;
                            searched = true;
                            if (((ch = p.left) != null &&
                                 (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                 (q = ch.find(h, k, kc)) != null))
                                return q;
                        }
                        dir = tieBreakOrder(k, pk);
                    }
    
                    TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        Node<K,V> xpn = xp.next;
                        TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        xp.next = x;
                        x.parent = x.prev = xp;
                        if (xpn != null)
                            ((TreeNode<K,V>)xpn).prev = x;
                        moveRootToFront(tab, balanceInsertion(root, x));
                        return null;
                    }
                }
            }
    
            /**
             * Removes the given node, that must be present before this call.
             * This is messier than typical red-black deletion code because we
             * cannot swap the contents of an interior node with a leaf
             * successor that is pinned by "next" pointers that are accessible
             * independently during traversal. So instead we swap the tree
             * linkages. If the current tree appears to have too few nodes,
             * the bin is converted back to a plain bin. (The test triggers
             * somewhere between 2 and 6 nodes, depending on tree structure).
             */
            final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                      boolean movable) {
                int n;
                if (tab == null || (n = tab.length) == 0)
                    return;
                int index = (n - 1) & hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
                TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
                if (pred == null)
                    tab[index] = first = succ;
                else
                    pred.next = succ;
                if (succ != null)
                    succ.prev = pred;
                if (first == null)
                    return;
                if (root.parent != null)
                    root = root.root();
                if (root == null
                    || (movable
                        && (root.right == null
                            || (rl = root.left) == null
                            || rl.left == null))) {
                    tab[index] = first.untreeify(map);  // too small
                    return;
                }
                TreeNode<K,V> p = this, pl = left, pr = right, replacement;
                if (pl != null && pr != null) {
                    TreeNode<K,V> s = pr, sl;
                    while ((sl = s.left) != null) // find successor
                        s = sl;
                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                    TreeNode<K,V> sr = s.right;
                    TreeNode<K,V> pp = p.parent;
                    if (s == pr) { // p was s's direct parent
                        p.parent = s;
                        s.right = p;
                    }
                    else {
                        TreeNode<K,V> sp = s.parent;
                        if ((p.parent = sp) != null) {
                            if (s == sp.left)
                                sp.left = p;
                            else
                                sp.right = p;
                        }
                        if ((s.right = pr) != null)
                            pr.parent = s;
                    }
                    p.left = null;
                    if ((p.right = sr) != null)
                        sr.parent = p;
                    if ((s.left = pl) != null)
                        pl.parent = s;
                    if ((s.parent = pp) == null)
                        root = s;
                    else if (p == pp.left)
                        pp.left = s;
                    else
                        pp.right = s;
                    if (sr != null)
                        replacement = sr;
                    else
                        replacement = p;
                }
                else if (pl != null)
                    replacement = pl;
                else if (pr != null)
                    replacement = pr;
                else
                    replacement = p;
                if (replacement != p) {
                    TreeNode<K,V> pp = replacement.parent = p.parent;
                    if (pp == null)
                        root = replacement;
                    else if (p == pp.left)
                        pp.left = replacement;
                    else
                        pp.right = replacement;
                    p.left = p.right = p.parent = null;
                }
    
                TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
    
                if (replacement == p) {  // detach
                    TreeNode<K,V> pp = p.parent;
                    p.parent = null;
                    if (pp != null) {
                        if (p == pp.left)
                            pp.left = null;
                        else if (p == pp.right)
                            pp.right = null;
                    }
                }
                if (movable)
                    moveRootToFront(tab, r);
            }
    
            /**
             * Splits nodes in a tree bin into lower and upper tree bins,
             * or untreeifies if now too small. Called only from resize;
             * see above discussion about split bits and indices.
             *
             * @param map the map
             * @param tab the table for recording bin heads
             * @param index the index of the table being split
             * @param bit the bit of hash to split on
             */
            final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
                TreeNode<K,V> b = this;
                // Relink into lo and hi lists, preserving order
                TreeNode<K,V> loHead = null, loTail = null;
                TreeNode<K,V> hiHead = null, hiTail = null;
                int lc = 0, hc = 0;
                for (TreeNode<K,V> e = b, next; e != null; e = next) {
                    next = (TreeNode<K,V>)e.next;
                    e.next = null;
                    if ((e.hash & bit) == 0) {
                        if ((e.prev = loTail) == null)
                            loHead = e;
                        else
                            loTail.next = e;
                        loTail = e;
                        ++lc;
                    }
                    else {
                        if ((e.prev = hiTail) == null)
                            hiHead = e;
                        else
                            hiTail.next = e;
                        hiTail = e;
                        ++hc;
                    }
                }
    
                if (loHead != null) {
                    if (lc <= UNTREEIFY_THRESHOLD)
                        tab[index] = loHead.untreeify(map);
                    else {
                        tab[index] = loHead;
                        if (hiHead != null) // (else is already treeified)
                            loHead.treeify(tab);
                    }
                }
                if (hiHead != null) {
                    if (hc <= UNTREEIFY_THRESHOLD)
                        tab[index + bit] = hiHead.untreeify(map);
                    else {
                        tab[index + bit] = hiHead;
                        if (loHead != null)
                            hiHead.treeify(tab);
                    }
                }
            }
    
            /* ------------------------------------------------------------ */
            // Red-black tree methods, all adapted from CLR
    
            static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                                  TreeNode<K,V> p) {
                TreeNode<K,V> r, pp, rl;
                if (p != null && (r = p.right) != null) {
                    if ((rl = p.right = r.left) != null)
                        rl.parent = p;
                    if ((pp = r.parent = p.parent) == null)
                        (root = r).red = false;
                    else if (pp.left == p)
                        pp.left = r;
                    else
                        pp.right = r;
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }
    
            static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                                   TreeNode<K,V> p) {
                TreeNode<K,V> l, pp, lr;
                if (p != null && (l = p.left) != null) {
                    if ((lr = p.left = l.right) != null)
                        lr.parent = p;
                    if ((pp = l.parent = p.parent) == null)
                        (root = l).red = false;
                    else if (pp.right == p)
                        pp.right = l;
                    else
                        pp.left = l;
                    l.right = p;
                    p.parent = l;
                }
                return root;
            }
    
            static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                        TreeNode<K,V> x) {
                x.red = true;
                for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                    if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    }
                    else if (!xp.red || (xpp = xp.parent) == null)
                        return root;
                    if (xp == (xppl = xpp.left)) {
                        if ((xppr = xpp.right) != null && xppr.red) {
                            xppr.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        }
                        else {
                            if (x == xp.right) {
                                root = rotateLeft(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    }
                    else {
                        if (xppl != null && xppl.red) {
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        }
                        else {
                            if (x == xp.left) {
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateLeft(root, xpp);
                                }
                            }
                        }
                    }
                }
            }
    
            static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                       TreeNode<K,V> x) {
                for (TreeNode<K,V> xp, xpl, xpr;;) {
                    if (x == null || x == root)
                        return root;
                    else if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    }
                    else if (x.red) {
                        x.red = false;
                        return root;
                    }
                    else if ((xpl = xp.left) == x) {
                        if ((xpr = xp.right) != null && xpr.red) {
                            xpr.red = false;
                            xp.red = true;
                            root = rotateLeft(root, xp);
                            xpr = (xp = x.parent) == null ? null : xp.right;
                        }
                        if (xpr == null)
                            x = xp;
                        else {
                            TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                            if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                                xpr.red = true;
                                x = xp;
                            }
                            else {
                                if (sr == null || !sr.red) {
                                    if (sl != null)
                                        sl.red = false;
                                    xpr.red = true;
                                    root = rotateRight(root, xpr);
                                    xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                                }
                                if (xpr != null) {
                                    xpr.red = (xp == null) ? false : xp.red;
                                    if ((sr = xpr.right) != null)
                                        sr.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateLeft(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                    else { // symmetric
                        if (xpl != null && xpl.red) {
                            xpl.red = false;
                            xp.red = true;
                            root = rotateRight(root, xp);
                            xpl = (xp = x.parent) == null ? null : xp.left;
                        }
                        if (xpl == null)
                            x = xp;
                        else {
                            TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                            if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                                xpl.red = true;
                                x = xp;
                            }
                            else {
                                if (sl == null || !sl.red) {
                                    if (sr != null)
                                        sr.red = false;
                                    xpl.red = true;
                                    root = rotateLeft(root, xpl);
                                    xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                                }
                                if (xpl != null) {
                                    xpl.red = (xp == null) ? false : xp.red;
                                    if ((sl = xpl.left) != null)
                                        sl.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateRight(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                }
            }
    
            /**
             * Recursive invariant check
             */
            static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
                TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (TreeNode<K,V>)t.next;
                if (tb != null && tb.next != t)
                    return false;
                if (tn != null && tn.prev != t)
                    return false;
                if (tp != null && t != tp.left && t != tp.right)
                    return false;
                if (tl != null && (tl.parent != t || tl.hash > t.hash))
                    return false;
                if (tr != null && (tr.parent != t || tr.hash < t.hash))
                    return false;
                if (t.red && tl != null && tl.red && tr != null && tr.red)
                    return false;
                if (tl != null && !checkInvariants(tl))
                    return false;
                if (tr != null && !checkInvariants(tr))
                    return false;
                return true;
            }
        }
    
    }
    

    二、Hashtable

    Hashtable的具体实现

    public class Hashtable<K,V>
        extends Dictionary<K,V>
        implements Map<K,V>, Cloneable, java.io.Serializable {
    

    从中可以看出HashTable继承Dictionary类,实现Map接口。其中Dictionary类是任何可将键映射到相应值的类(如 Hashtable)的抽象父类。每个键和每个值都是一个对象。在任何一个 Dictionary 对象中,每个键至多与一个值相关联。Map是"key-value键值对"接口。

    HashTable采用"拉链法"实现哈希表,它定义了几个重要的参数:table、count、threshold、loadFactor、modCount。

    table:为一个Entry[]数组类型,Entry代表了“拉链”的节点,每一个Entry代表了一个键值对,哈希表的"key-value键值对"都是存储在Entry数组中的。

    count:HashTable的大小,注意这个大小并不是HashTable的容器大小,而是他所包含Entry键值对的数量。

    threshold:Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。

    loadFactor:加载因子。

    modCount:用来实现“fail-fast”机制的(也就是快速失败)。所谓快速失败就是在并发集合中,其进行迭代操作时,若有其他线程对其进行结构性的修改,这时迭代器会立马感知到,并且立即抛出ConcurrentModificationException异常,而不是等到迭代完成之后才告诉你已经出错了。
    HashTable的四种构造方法:

        /**
         * Constructs a new, empty hashtable with the specified initial
         * capacity and the specified load factor.
         *
         * @param      initialCapacity   the initial capacity of the hashtable.
         * @param      loadFactor        the load factor of the hashtable.
         * @exception  IllegalArgumentException  if the initial capacity is less
         *             than zero, or if the load factor is nonpositive.
         */
        public Hashtable(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal Capacity: "+
                                                   initialCapacity);
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal Load: "+loadFactor);
    
            if (initialCapacity==0)
                initialCapacity = 1;
            this.loadFactor = loadFactor;
            table = new Entry<?,?>[initialCapacity];
            threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        }
    
        /**
         * Constructs a new, empty hashtable with the specified initial capacity
         * and default load factor (0.75).
         *
         * @param     initialCapacity   the initial capacity of the hashtable.
         * @exception IllegalArgumentException if the initial capacity is less
         *              than zero.
         */
        public Hashtable(int initialCapacity) {
            this(initialCapacity, 0.75f);
        }
    
        /**
         * Constructs a new, empty hashtable with a default initial capacity (11)
         * and load factor (0.75).
         */
        public Hashtable() {
            this(11, 0.75f);
        }
    
        /**
         * Constructs a new hashtable with the same mappings as the given
         * Map.  The hashtable is created with an initial capacity sufficient to
         * hold the mappings in the given Map and a default load factor (0.75).
         *
         * @param t the map whose mappings are to be placed in this map.
         * @throws NullPointerException if the specified map is null.
         * @since   1.2
         */
        public Hashtable(Map<? extends K, ? extends V> t) {
            this(Math.max(2*t.size(), 11), 0.75f);
            putAll(t);
        }
    

      Hashtable的其他相关方法:

        /**
         * Returns the number of keys in this hashtable.
         *
         * @return  the number of keys in this hashtable.
         */
        public synchronized int size() {
            return count;
        }
    
        /**
         * Tests if this hashtable maps no keys to values.
         *
         * @return  <code>true</code> if this hashtable maps no keys to values;
         *          <code>false</code> otherwise.
         */
        public synchronized boolean isEmpty() {
            return count == 0;
        }
    
        /**
         * Returns an enumeration of the keys in this hashtable.
         *
         * @return  an enumeration of the keys in this hashtable.
         * @see     Enumeration
         * @see     #elements()
         * @see     #keySet()
         * @see     Map
         */
        public synchronized Enumeration<K> keys() {
            return this.<K>getEnumeration(KEYS);
        }
    
        /**
         * Returns an enumeration of the values in this hashtable.
         * Use the Enumeration methods on the returned object to fetch the elements
         * sequentially.
         *
         * @return  an enumeration of the values in this hashtable.
         * @see     java.util.Enumeration
         * @see     #keys()
         * @see     #values()
         * @see     Map
         */
        public synchronized Enumeration<V> elements() {
            return this.<V>getEnumeration(VALUES);
        }
    
        /**
         * Tests if some key maps into the specified value in this hashtable.
         * This operation is more expensive than the {@link #containsKey
         * containsKey} method.
         *
         * <p>Note that this method is identical in functionality to
         * {@link #containsValue containsValue}, (which is part of the
         * {@link Map} interface in the collections framework).
         *
         * @param      value   a value to search for
         * @return     <code>true</code> if and only if some key maps to the
         *             <code>value</code> argument in this hashtable as
         *             determined by the <tt>equals</tt> method;
         *             <code>false</code> otherwise.
         * @exception  NullPointerException  if the value is <code>null</code>
         */
        public synchronized boolean contains(Object value) {
            if (value == null) {
                throw new NullPointerException();
            }
    
            Entry<?,?> tab[] = table;
            for (int i = tab.length ; i-- > 0 ;) {
                for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) {
                    if (e.value.equals(value)) {
                        return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * Returns true if this hashtable maps one or more keys to this value.
         *
         * <p>Note that this method is identical in functionality to {@link
         * #contains contains} (which predates the {@link Map} interface).
         *
         * @param value value whose presence in this hashtable is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         *         specified value
         * @throws NullPointerException  if the value is <code>null</code>
         * @since 1.2
         */
        public boolean containsValue(Object value) {
            return contains(value);
        }
    
        /**
         * Tests if the specified object is a key in this hashtable.
         *
         * @param   key   possible key
         * @return  <code>true</code> if and only if the specified object
         *          is a key in this hashtable, as determined by the
         *          <tt>equals</tt> method; <code>false</code> otherwise.
         * @throws  NullPointerException  if the key is <code>null</code>
         * @see     #contains(Object)
         */
        public synchronized boolean containsKey(Object key) {
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    return true;
                }
            }
            return false;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key.equals(k))},
         * then this method returns {@code v}; otherwise it returns
         * {@code null}.  (There can be at most one such mapping.)
         *
         * @param key the key whose associated value is to be returned
         * @return the value to which the specified key is mapped, or
         *         {@code null} if this map contains no mapping for the key
         * @throws NullPointerException if the specified key is null
         * @see     #put(Object, Object)
         */
        @SuppressWarnings("unchecked")
        public synchronized V get(Object key) {
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    return (V)e.value;
                }
            }
            return null;
        }
    
        /**
         * The maximum size of array to allocate.
         * Some VMs reserve some header words in an array.
         * Attempts to allocate larger arrays may result in
         * OutOfMemoryError: Requested array size exceeds VM limit
         */
        private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
        /**
         * Increases the capacity of and internally reorganizes this
         * hashtable, in order to accommodate and access its entries more
         * efficiently.  This method is called automatically when the
         * number of keys in the hashtable exceeds this hashtable's capacity
         * and load factor.
         */
        @SuppressWarnings("unchecked")
        protected void rehash() {
            int oldCapacity = table.length;
            Entry<?,?>[] oldMap = table;
    
            // overflow-conscious code
            int newCapacity = (oldCapacity << 1) + 1;
            if (newCapacity - MAX_ARRAY_SIZE > 0) {
                if (oldCapacity == MAX_ARRAY_SIZE)
                    // Keep running with MAX_ARRAY_SIZE buckets
                    return;
                newCapacity = MAX_ARRAY_SIZE;
            }
            Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
    
            modCount++;
            threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
            table = newMap;
    
            for (int i = oldCapacity ; i-- > 0 ;) {
                for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
                    Entry<K,V> e = old;
                    old = old.next;
    
                    int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                    e.next = (Entry<K,V>)newMap[index];
                    newMap[index] = e;
                }
            }
        }
    
        private void addEntry(int hash, K key, V value, int index) {
            modCount++;
    
            Entry<?,?> tab[] = table;
            if (count >= threshold) {
                // Rehash the table if the threshold is exceeded
                rehash();
    
                tab = table;
                hash = key.hashCode();
                index = (hash & 0x7FFFFFFF) % tab.length;
            }
    
            // Creates the new entry.
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>) tab[index];
            tab[index] = new Entry<>(hash, key, value, e);
            count++;
        }
    
        /**
         * Maps the specified <code>key</code> to the specified
         * <code>value</code> in this hashtable. Neither the key nor the
         * value can be <code>null</code>. <p>
         *
         * The value can be retrieved by calling the <code>get</code> method
         * with a key that is equal to the original key.
         *
         * @param      key     the hashtable key
         * @param      value   the value
         * @return     the previous value of the specified key in this hashtable,
         *             or <code>null</code> if it did not have one
         * @exception  NullPointerException  if the key or value is
         *               <code>null</code>
         * @see     Object#equals(Object)
         * @see     #get(Object)
         */
        public synchronized V put(K key, V value) {
            // Make sure the value is not null
            if (value == null) {
                throw new NullPointerException();
            }
    
            // Makes sure the key is not already in the hashtable.
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> entry = (Entry<K,V>)tab[index];
            for(; entry != null ; entry = entry.next) {
                if ((entry.hash == hash) && entry.key.equals(key)) {
                    V old = entry.value;
                    entry.value = value;
                    return old;
                }
            }
    
            addEntry(hash, key, value, index);
            return null;
        }
    
        /**
         * Removes the key (and its corresponding value) from this
         * hashtable. This method does nothing if the key is not in the hashtable.
         *
         * @param   key   the key that needs to be removed
         * @return  the value to which the key had been mapped in this hashtable,
         *          or <code>null</code> if the key did not have a mapping
         * @throws  NullPointerException  if the key is <code>null</code>
         */
        public synchronized V remove(Object key) {
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    modCount++;
                    if (prev != null) {
                        prev.next = e.next;
                    } else {
                        tab[index] = e.next;
                    }
                    count--;
                    V oldValue = e.value;
                    e.value = null;
                    return oldValue;
                }
            }
            return null;
        }
    
        /**
         * Copies all of the mappings from the specified map to this hashtable.
         * These mappings will replace any mappings that this hashtable had for any
         * of the keys currently in the specified map.
         *
         * @param t mappings to be stored in this map
         * @throws NullPointerException if the specified map is null
         * @since 1.2
         */
        public synchronized void putAll(Map<? extends K, ? extends V> t) {
            for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
                put(e.getKey(), e.getValue());
        }
    
        /**
         * Clears this hashtable so that it contains no keys.
         */
        public synchronized void clear() {
            Entry<?,?> tab[] = table;
            modCount++;
            for (int index = tab.length; --index >= 0; )
                tab[index] = null;
            count = 0;
        }
    
        /**
         * Creates a shallow copy of this hashtable. All the structure of the
         * hashtable itself is copied, but the keys and values are not cloned.
         * This is a relatively expensive operation.
         *
         * @return  a clone of the hashtable
         */
        public synchronized Object clone() {
            try {
                Hashtable<?,?> t = (Hashtable<?,?>)super.clone();
                t.table = new Entry<?,?>[table.length];
                for (int i = table.length ; i-- > 0 ; ) {
                    t.table[i] = (table[i] != null)
                        ? (Entry<?,?>) table[i].clone() : null;
                }
                t.keySet = null;
                t.entrySet = null;
                t.values = null;
                t.modCount = 0;
                return t;
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
        }
    
        /**
         * Returns a string representation of this <tt>Hashtable</tt> object
         * in the form of a set of entries, enclosed in braces and separated
         * by the ASCII characters "<tt>, </tt>" (comma and space). Each
         * entry is rendered as the key, an equals sign <tt>=</tt>, and the
         * associated element, where the <tt>toString</tt> method is used to
         * convert the key and element to strings.
         *
         * @return  a string representation of this hashtable
         */
        public synchronized String toString() {
            int max = size() - 1;
            if (max == -1)
                return "{}";
    
            StringBuilder sb = new StringBuilder();
            Iterator<Map.Entry<K,V>> it = entrySet().iterator();
    
            sb.append('{');
            for (int i = 0; ; i++) {
                Map.Entry<K,V> e = it.next();
                K key = e.getKey();
                V value = e.getValue();
                sb.append(key   == this ? "(this Map)" : key.toString());
                sb.append('=');
                sb.append(value == this ? "(this Map)" : value.toString());
    
                if (i == max)
                    return sb.append('}').toString();
                sb.append(", ");
            }
        }
    
    
        private <T> Enumeration<T> getEnumeration(int type) {
            if (count == 0) {
                return Collections.emptyEnumeration();
            } else {
                return new Enumerator<>(type, false);
            }
        }
    
        private <T> Iterator<T> getIterator(int type) {
            if (count == 0) {
                return Collections.emptyIterator();
            } else {
                return new Enumerator<>(type, true);
            }
        }
    
        // Views
    
        /**
         * Each of these fields are initialized to contain an instance of the
         * appropriate view the first time this view is requested.  The views are
         * stateless, so there's no reason to create more than one of each.
         */
        private transient volatile Set<K> keySet;
        private transient volatile Set<Map.Entry<K,V>> entrySet;
        private transient volatile Collection<V> values;
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation), the results of
         * the iteration are undefined.  The set supports element removal,
         * which removes the corresponding mapping from the map, via the
         * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
         * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
         * operations.
         *
         * @since 1.2
         */
        public Set<K> keySet() {
            if (keySet == null)
                keySet = Collections.synchronizedSet(new KeySet(), this);
            return keySet;
        }
    
        private class KeySet extends AbstractSet<K> {
            public Iterator<K> iterator() {
                return getIterator(KEYS);
            }
            public int size() {
                return count;
            }
            public boolean contains(Object o) {
                return containsKey(o);
            }
            public boolean remove(Object o) {
                return Hashtable.this.remove(o) != null;
            }
            public void clear() {
                Hashtable.this.clear();
            }
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation, or through the
         * <tt>setValue</tt> operation on a map entry returned by the
         * iterator) the results of the iteration are undefined.  The set
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
         * <tt>clear</tt> operations.  It does not support the
         * <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @since 1.2
         */
        public Set<Map.Entry<K,V>> entrySet() {
            if (entrySet==null)
                entrySet = Collections.synchronizedSet(new EntrySet(), this);
            return entrySet;
        }
    
        private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
            public Iterator<Map.Entry<K,V>> iterator() {
                return getIterator(ENTRIES);
            }
    
            public boolean add(Map.Entry<K,V> o) {
                return super.add(o);
            }
    
            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
                Object key = entry.getKey();
                Entry<?,?>[] tab = table;
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
    
                for (Entry<?,?> e = tab[index]; e != null; e = e.next)
                    if (e.hash==hash && e.equals(entry))
                        return true;
                return false;
            }
    
            public boolean remove(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                Object key = entry.getKey();
                Entry<?,?>[] tab = table;
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
    
                @SuppressWarnings("unchecked")
                Entry<K,V> e = (Entry<K,V>)tab[index];
                for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                    if (e.hash==hash && e.equals(entry)) {
                        modCount++;
                        if (prev != null)
                            prev.next = e.next;
                        else
                            tab[index] = e.next;
    
                        count--;
                        e.value = null;
                        return true;
                    }
                }
                return false;
            }
    
            public int size() {
                return count;
            }
    
            public void clear() {
                Hashtable.this.clear();
            }
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa.  If the map is
         * modified while an iteration over the collection is in progress
         * (except through the iterator's own <tt>remove</tt> operation),
         * the results of the iteration are undefined.  The collection
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
         * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
         * support the <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @since 1.2
         */
        public Collection<V> values() {
            if (values==null)
                values = Collections.synchronizedCollection(new ValueCollection(),
                                                            this);
            return values;
        }
    
        private class ValueCollection extends AbstractCollection<V> {
            public Iterator<V> iterator() {
                return getIterator(VALUES);
            }
            public int size() {
                return count;
            }
            public boolean contains(Object o) {
                return containsValue(o);
            }
            public void clear() {
                Hashtable.this.clear();
            }
        }
    
        // Comparison and hashing
    
        /**
         * Compares the specified Object with this Map for equality,
         * as per the definition in the Map interface.
         *
         * @param  o object to be compared for equality with this hashtable
         * @return true if the specified Object is equal to this Map
         * @see Map#equals(Object)
         * @since 1.2
         */
        public synchronized boolean equals(Object o) {
            if (o == this)
                return true;
    
            if (!(o instanceof Map))
                return false;
            Map<?,?> t = (Map<?,?>) o;
            if (t.size() != size())
                return false;
    
            try {
                Iterator<Map.Entry<K,V>> i = entrySet().iterator();
                while (i.hasNext()) {
                    Map.Entry<K,V> e = i.next();
                    K key = e.getKey();
                    V value = e.getValue();
                    if (value == null) {
                        if (!(t.get(key)==null && t.containsKey(key)))
                            return false;
                    } else {
                        if (!value.equals(t.get(key)))
                            return false;
                    }
                }
            } catch (ClassCastException unused)   {
                return false;
            } catch (NullPointerException unused) {
                return false;
            }
    
            return true;
        }
    
        /**
         * Returns the hash code value for this Map as per the definition in the
         * Map interface.
         *
         * @see Map#hashCode()
         * @since 1.2
         */
        public synchronized int hashCode() {
            /*
             * This code detects the recursion caused by computing the hash code
             * of a self-referential hash table and prevents the stack overflow
             * that would otherwise result.  This allows certain 1.1-era
             * applets with self-referential hash tables to work.  This code
             * abuses the loadFactor field to do double-duty as a hashCode
             * in progress flag, so as not to worsen the space performance.
             * A negative load factor indicates that hash code computation is
             * in progress.
             */
            int h = 0;
            if (count == 0 || loadFactor < 0)
                return h;  // Returns zero
    
            loadFactor = -loadFactor;  // Mark hashCode computation in progress
            Entry<?,?>[] tab = table;
            for (Entry<?,?> entry : tab) {
                while (entry != null) {
                    h += entry.hashCode();
                    entry = entry.next;
                }
            }
    
            loadFactor = -loadFactor;  // Mark hashCode computation complete
    
            return h;
        }
    
        @Override
        public synchronized V getOrDefault(Object key, V defaultValue) {
            V result = get(key);
            return (null == result) ? defaultValue : result;
        }
    
        @SuppressWarnings("unchecked")
        @Override
        public synchronized void forEach(BiConsumer<? super K, ? super V> action) {
            Objects.requireNonNull(action);     // explicit check required in case
                                                // table is empty.
            final int expectedModCount = modCount;
    
            Entry<?, ?>[] tab = table;
            for (Entry<?, ?> entry : tab) {
                while (entry != null) {
                    action.accept((K)entry.key, (V)entry.value);
                    entry = entry.next;
    
                    if (expectedModCount != modCount) {
                        throw new ConcurrentModificationException();
                    }
                }
            }
        }
    
        @SuppressWarnings("unchecked")
        @Override
        public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            Objects.requireNonNull(function);     // explicit check required in case
                                                  // table is empty.
            final int expectedModCount = modCount;
    
            Entry<K, V>[] tab = (Entry<K, V>[])table;
            for (Entry<K, V> entry : tab) {
                while (entry != null) {
                    entry.value = Objects.requireNonNull(
                        function.apply(entry.key, entry.value));
                    entry = entry.next;
    
                    if (expectedModCount != modCount) {
                        throw new ConcurrentModificationException();
                    }
                }
            }
        }
    
        @Override
        public synchronized V putIfAbsent(K key, V value) {
            Objects.requireNonNull(value);
    
            // Makes sure the key is not already in the hashtable.
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> entry = (Entry<K,V>)tab[index];
            for (; entry != null; entry = entry.next) {
                if ((entry.hash == hash) && entry.key.equals(key)) {
                    V old = entry.value;
                    if (old == null) {
                        entry.value = value;
                    }
                    return old;
                }
            }
    
            addEntry(hash, key, value, index);
            return null;
        }
    
        @Override
        public synchronized boolean remove(Object key, Object value) {
            Objects.requireNonNull(value);
    
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
                    modCount++;
                    if (prev != null) {
                        prev.next = e.next;
                    } else {
                        tab[index] = e.next;
                    }
                    count--;
                    e.value = null;
                    return true;
                }
            }
            return false;
        }
    
        @Override
        public synchronized boolean replace(K key, V oldValue, V newValue) {
            Objects.requireNonNull(oldValue);
            Objects.requireNonNull(newValue);
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (; e != null; e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    if (e.value.equals(oldValue)) {
                        e.value = newValue;
                        return true;
                    } else {
                        return false;
                    }
                }
            }
            return false;
        }
    
        @Override
        public synchronized V replace(K key, V value) {
            Objects.requireNonNull(value);
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (; e != null; e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    V oldValue = e.value;
                    e.value = value;
                    return oldValue;
                }
            }
            return null;
        }
    
        @Override
        public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
            Objects.requireNonNull(mappingFunction);
    
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (; e != null; e = e.next) {
                if (e.hash == hash && e.key.equals(key)) {
                    // Hashtable not accept null value
                    return e.value;
                }
            }
    
            V newValue = mappingFunction.apply(key);
            if (newValue != null) {
                addEntry(hash, key, newValue, index);
            }
    
            return newValue;
        }
    
        @Override
        public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            Objects.requireNonNull(remappingFunction);
    
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                if (e.hash == hash && e.key.equals(key)) {
                    V newValue = remappingFunction.apply(key, e.value);
                    if (newValue == null) {
                        modCount++;
                        if (prev != null) {
                            prev.next = e.next;
                        } else {
                            tab[index] = e.next;
                        }
                        count--;
                    } else {
                        e.value = newValue;
                    }
                    return newValue;
                }
            }
            return null;
        }
    
        @Override
        public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            Objects.requireNonNull(remappingFunction);
    
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                if (e.hash == hash && Objects.equals(e.key, key)) {
                    V newValue = remappingFunction.apply(key, e.value);
                    if (newValue == null) {
                        modCount++;
                        if (prev != null) {
                            prev.next = e.next;
                        } else {
                            tab[index] = e.next;
                        }
                        count--;
                    } else {
                        e.value = newValue;
                    }
                    return newValue;
                }
            }
    
            V newValue = remappingFunction.apply(key, null);
            if (newValue != null) {
                addEntry(hash, key, newValue, index);
            }
    
            return newValue;
        }
    
        @Override
        public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
            Objects.requireNonNull(remappingFunction);
    
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                if (e.hash == hash && e.key.equals(key)) {
                    V newValue = remappingFunction.apply(e.value, value);
                    if (newValue == null) {
                        modCount++;
                        if (prev != null) {
                            prev.next = e.next;
                        } else {
                            tab[index] = e.next;
                        }
                        count--;
                    } else {
                        e.value = newValue;
                    }
                    return newValue;
                }
            }
    
            if (value != null) {
                addEntry(hash, key, value, index);
            }
    
            return value;
        }
    
        /**
         * Save the state of the Hashtable to a stream (i.e., serialize it).
         *
         * @serialData The <i>capacity</i> of the Hashtable (the length of the
         *             bucket array) is emitted (int), followed by the
         *             <i>size</i> of the Hashtable (the number of key-value
         *             mappings), followed by the key (Object) and value (Object)
         *             for each key-value mapping represented by the Hashtable
         *             The key-value mappings are emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
                throws IOException {
            Entry<Object, Object> entryStack = null;
    
            synchronized (this) {
                // Write out the threshold and loadFactor
                s.defaultWriteObject();
    
                // Write out the length and count of elements
                s.writeInt(table.length);
                s.writeInt(count);
    
                // Stack copies of the entries in the table
                for (int index = 0; index < table.length; index++) {
                    Entry<?,?> entry = table[index];
    
                    while (entry != null) {
                        entryStack =
                            new Entry<>(0, entry.key, entry.value, entryStack);
                        entry = entry.next;
                    }
                }
            }
    
            // Write out the key/value objects from the stacked entries
            while (entryStack != null) {
                s.writeObject(entryStack.key);
                s.writeObject(entryStack.value);
                entryStack = entryStack.next;
            }
        }
    
        /**
         * Reconstitute the Hashtable from a stream (i.e., deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
             throws IOException, ClassNotFoundException
        {
            // Read in the threshold and loadFactor
            s.defaultReadObject();
    
            // Validate loadFactor (ignore threshold - it will be re-computed)
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new StreamCorruptedException("Illegal Load: " + loadFactor);
    
            // Read the original length of the array and number of elements
            int origlength = s.readInt();
            int elements = s.readInt();
    
            // Validate # of elements
            if (elements < 0)
                throw new StreamCorruptedException("Illegal # of Elements: " + elements);
    
            // Clamp original length to be more than elements / loadFactor
            // (this is the invariant enforced with auto-growth)
            origlength = Math.max(origlength, (int)(elements / loadFactor) + 1);
    
            // Compute new length with a bit of room 5% + 3 to grow but
            // no larger than the clamped original length.  Make the length
            // odd if it's large enough, this helps distribute the entries.
            // Guard against the length ending up zero, that's not valid.
            int length = (int)((elements + elements / 20) / loadFactor) + 3;
            if (length > elements && (length & 1) == 0)
                length--;
            length = Math.min(length, origlength);
    
            if (length < 0) { // overflow
                length = origlength;
            }
    
            // Check Map.Entry[].class since it's the nearest public type to
            // what we're actually creating.
            SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, length);
            table = new Entry<?,?>[length];
            threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
            count = 0;
    
            // Read the number of elements and then all the key/value objects
            for (; elements > 0; elements--) {
                @SuppressWarnings("unchecked")
                    K key = (K)s.readObject();
                @SuppressWarnings("unchecked")
                    V value = (V)s.readObject();
                // sync is eliminated for performance
                reconstitutionPut(table, key, value);
            }
        }
    
        /**
         * The put method used by readObject. This is provided because put
         * is overridable and should not be called in readObject since the
         * subclass will not yet be initialized.
         *
         * <p>This differs from the regular put method in several ways. No
         * checking for rehashing is necessary since the number of elements
         * initially in the table is known. The modCount is not incremented and
         * there's no synchronization because we are creating a new instance.
         * Also, no return value is needed.
         */
        private void reconstitutionPut(Entry<?,?>[] tab, K key, V value)
            throws StreamCorruptedException
        {
            if (value == null) {
                throw new java.io.StreamCorruptedException();
            }
            // Makes sure the key is not already in the hashtable.
            // This should not happen in deserialized version.
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    throw new java.io.StreamCorruptedException();
                }
            }
            // Creates the new entry.
            @SuppressWarnings("unchecked")
                Entry<K,V> e = (Entry<K,V>)tab[index];
            tab[index] = new Entry<>(hash, key, value, e);
            count++;
        }
    
        /**
         * Hashtable bucket collision list entry
         */
        private static class Entry<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Entry<K,V> next;
    
            protected Entry(int hash, K key, V value, Entry<K,V> next) {
                this.hash = hash;
                this.key =  key;
                this.value = value;
                this.next = next;
            }
    
            @SuppressWarnings("unchecked")
            protected Object clone() {
                return new Entry<>(hash, key, value,
                                      (next==null ? null : (Entry<K,V>) next.clone()));
            }
    
            // Map.Entry Ops
    
            public K getKey() {
                return key;
            }
    
            public V getValue() {
                return value;
            }
    
            public V setValue(V value) {
                if (value == null)
                    throw new NullPointerException();
    
                V oldValue = this.value;
                this.value = value;
                return oldValue;
            }
    
            public boolean equals(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
    
                return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
                   (value==null ? e.getValue()==null : value.equals(e.getValue()));
            }
    
            public int hashCode() {
                return hash ^ Objects.hashCode(value);
            }
    
            public String toString() {
                return key.toString()+"="+value.toString();
            }
        }
    
        // Types of Enumerations/Iterations
        private static final int KEYS = 0;
        private static final int VALUES = 1;
        private static final int ENTRIES = 2;
    
        /**
         * A hashtable enumerator class.  This class implements both the
         * Enumeration and Iterator interfaces, but individual instances
         * can be created with the Iterator methods disabled.  This is necessary
         * to avoid unintentionally increasing the capabilities granted a user
         * by passing an Enumeration.
         */
        private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
            Entry<?,?>[] table = Hashtable.this.table;
            int index = table.length;
            Entry<?,?> entry;
            Entry<?,?> lastReturned;
            int type;
    
            /**
             * Indicates whether this Enumerator is serving as an Iterator
             * or an Enumeration.  (true -> Iterator).
             */
            boolean iterator;
    
            /**
             * The modCount value that the iterator believes that the backing
             * Hashtable should have.  If this expectation is violated, the iterator
             * has detected concurrent modification.
             */
            protected int expectedModCount = modCount;
    
            Enumerator(int type, boolean iterator) {
                this.type = type;
                this.iterator = iterator;
            }
    
            public boolean hasMoreElements() {
                Entry<?,?> e = entry;
                int i = index;
                Entry<?,?>[] t = table;
                /* Use locals for faster loop iteration */
                while (e == null && i > 0) {
                    e = t[--i];
                }
                entry = e;
                index = i;
                return e != null;
            }
    
            @SuppressWarnings("unchecked")
            public T nextElement() {
                Entry<?,?> et = entry;
                int i = index;
                Entry<?,?>[] t = table;
                /* Use locals for faster loop iteration */
                while (et == null && i > 0) {
                    et = t[--i];
                }
                entry = et;
                index = i;
                if (et != null) {
                    Entry<?,?> e = lastReturned = entry;
                    entry = e.next;
                    return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
                }
                throw new NoSuchElementException("Hashtable Enumerator");
            }
    
            // Iterator methods
            public boolean hasNext() {
                return hasMoreElements();
            }
    
            public T next() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return nextElement();
            }
    
            public void remove() {
                if (!iterator)
                    throw new UnsupportedOperationException();
                if (lastReturned == null)
                    throw new IllegalStateException("Hashtable Enumerator");
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
    
                synchronized(Hashtable.this) {
                    Entry<?,?>[] tab = Hashtable.this.table;
                    int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
    
                    @SuppressWarnings("unchecked")
                    Entry<K,V> e = (Entry<K,V>)tab[index];
                    for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                        if (e == lastReturned) {
                            modCount++;
                            expectedModCount++;
                            if (prev == null)
                                tab[index] = e.next;
                            else
                                prev.next = e.next;
                            count--;
                            lastReturned = null;
                            return;
                        }
                    }
                    throw new ConcurrentModificationException();
                }
            }
        }
    }  

    三、HashMap与HashTable的区别

     1、继承的父类不同

    Hashtable继承的是Dictionary类,HashMap继承的是AbstractMap,但两者都实现了Map接口。

    2、是否允许null(HashMap可以为NULL,Hashtable不可以为NULL)

    HashMap可以允许存在一个 null 的 key 和任意个 null 的 value,不过建议尽量避免这样使用null作为 key,HashMap以null作为key时,总是存储在table数组的第一个节点上;Hashtable中的 key 和 value 都不允许为 null 。

    在HashMap中,当get()方法返回null值时,可能是 HashMap中没有该键,也可能使该键所对应的值为null。因此,在HashMap中不能由get()方法来判断HashMap中是否存在某个键, 而应该用containsKey()方法来判断。

    (1)当HashMap遇到为null的key时,它会调用putForNullKey方法来进行处理。对于value没有进行任何处理,只要是对象都可以。

    if (key == null)
                return putForNullKey(value);
    

    (2)如果在Hashtable中有类似put(null,null)的操作,编译时可以通过,因为key和value都是Object类型,但运行时会抛出NullPointerException异常。 

    if (value == null) {
                throw new NullPointerException();
    }
    

    3、Hashtable的方法是线程安全的,底层的每个方法都使用synchronized的,而HashMap的方法多线程不安全。 

    虽然HashMap不是线程安全的,但是它的效率会比Hashtable要好很多。当需要多线程操作的时候可以使用线程安全的ConcurrentHashMap。ConcurrentHashMap虽然也是线程安全的,但是它的效率比Hashtable要高好多倍。因为ConcurrentHashMap使用了分段锁,并不

    对整个数据进行锁定。

    4、遍历不同:HashMap仅支持Iterator的遍历方式,Hashtable支持Iterator和Enumeration两种遍历方式。

    (1)HashMap 的Iterator 使用的是fail-fast 迭代器,当有其他线程改变了 HashMap 的结构(增加、删除、修改元素),将会抛出ConcurrentModificationException。

    (2)JDK8之前的版本中,Hashtable是没有fast-fail机制的。在JDK8及以后的版本中 ,HashTable也是使用fast-fail的, 源码如下: 

    if (expectedModCount != modCount) {
         throw new ConcurrentModificationException();
    }
    

    modCount 的使用类似于并发编程中的 CAS( Compare and Swap) 技术,每次在发生增删改操作的时候,都会出现modCount++的动作,而modcount可以理解为是当前hashtable的状态。每发生一次操作,状态+1。设置这个状态,主要是用于hashtable 等容器类在迭代时,

    判断数据是否过时时使用的。尽管hashtable采用了原生的同步锁来保护数据安全。但是在出现迭代数据的时候,则无法保证边迭代,边正确操作。于是使用这个值来标记状态。一旦在迭代的过程中状态发生了改变,则会快速抛出一个异常,终止迭代行为。

    5、是否提供contains方法:

    (1)HashMap把Hashtable的contains()方法去掉了,改成containsValue 和 containsKey ,因为contains() 方法容易让人引起误解;

    (2)Hashtable则保留了contains,containsValue 和 containsKey 三个方法 ,其中 contains 和 containsValue 功能相同。

    6、内部实现使用的数值初始化 和 扩容方式不同:

    (1)两者的默认负载因子都是0.75,但Hashtable扩容时,容量变为原来的2倍+1,HashMap扩容时,将容量变成原来的2倍;Hashtable在不制定容量的情况下默认容量是11,也就是说Hashtable会尽量使用素数、奇数,而HashMap 的默认容量 为16,Hashtable不要求底层数组的容量为2的整数次幂,而 HashMap 要求一定为2的整数次幂。

    (2) 之所以会有这样的不同,是因为Hashtable和HashMap设计时的侧重点不同。Hashtable的侧重点是哈希的结果更加均匀,使得哈希冲突减少。当哈希表的大小为素数时,简单的取模哈希的结果会更加均匀。而HashMap则更加关注hash的计算效率问题。在取模计算时,如果模数是2的幂,那么我们可以直接使用位运算来得到结果,效率要大大高于做除法。HashMap为了加快hash的速度,将哈希表的大小固定为了2的幂。当然这引入了哈希分布不均匀的问题,所以HashMap为解决这问题,又对hash算法做了一些改动。这从而导致了Hashtable和HashMap的计算hash值的方法不同。

    7、hash 值不同:

    (1)Hashtable直接使用Object的hashCode(),hashCode是JDK根据对象的地址或者字符串或者数字算出来的int类型的数值,然后再使用去取模运算来获得最终的位置。 这里一般先用 hash & 0x7FFFFFFF 后,再对length取模,&0x7FFFFFFF的目的是为了将负的hash值转化为正值,因为hash值有可能为负数,而 hash & 0x7FFFFFFF 后,只有符号外改变,而后面的位都不变。Hashtable在计算元素的位置时需要进行一次除法运算,而除法运算是比较耗时的。

     int hash = key.hashCode();
     int index = (hash & 0x7FFFFFFF) % tab.length;
    

    (2)为了提高计算效率,HashMap 将哈希表的大小固定为了2的幂,这样在取模预算时,不需要做除法,只需要做位运算。位运算比除法的效率要高很多。HashMap的效率虽然提高了,但是hash冲突却也增加了。因为它得出的hash值的低位相同的概率比较高,HashMap的效率虽然提高了,但是hash冲突却也增加了。因为它得出的hash值的低位相同的概率比较高。而计算位运算为了解决这个问题,HashMap重新根据hashcode计算hash值后,又对hash值做了一些运算来打散数据。使得取得的位置更加分散,从而减少了hash冲突。当然了,为了高效,HashMap只做了一些简单的位处理。从而不至于把使用2 的幂次方带来的效率提升给抵消掉。

    static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    

    参考链接:

    https://blog.csdn.net/a745233700/article/details/83183155

    https://blog.csdn.net/woshimaxiao1/article/details/83661464

  • 相关阅读:
    LeetCode
    LeetCode
    LeetCode
    LeetCode
    thinkphp使用foreach遍历的方法
    php中foreach中使用&的办法
    thinkphp做搜索功能
    数据库虚拟主机目录的配置文件
    网页响应式设计原理
    数据库常见远程连接问题
  • 原文地址:https://www.cnblogs.com/longlyseul/p/15015957.html
Copyright © 2020-2023  润新知