• PyTorch——(7) MNIST手写数字识别实例


    网络结构

    在这里插入图片描述

    代码

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    
    
    batch_size=200
    learning_rate=0.01
    epochs=10
    
    # 下载数据
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=batch_size, shuffle=True)
    
    
    
    w1, b1 = torch.randn(200, 784, requires_grad=True),
             torch.zeros(200, requires_grad=True)
    w2, b2 = torch.randn(200, 200, requires_grad=True),
             torch.zeros(200, requires_grad=True)
    w3, b3 = torch.randn(10, 200, requires_grad=True),
             torch.zeros(10, requires_grad=True)
    
    torch.nn.init.kaiming_normal_(w1)
    torch.nn.init.kaiming_normal_(w2)
    torch.nn.init.kaiming_normal_(w3)
    
    #自己定义结构实现
    def forward(x):
        x = x@w1.t() + b1
        x = F.relu(x)
        x = x@w2.t() + b2
        x = F.relu(x)
        x = x@w3.t() + b3
        x = F.relu(x)
        return x
    
    # 使用Pytorch的API实现
    class MLP(nn.Module):
    
        def __init__(self):
            super(MLP, self).__init__()
    
            self.model = nn.Sequential(
                nn.Linear(784, 200),
                nn.ReLU(inplace=True),
                nn.Linear(200, 200),
                nn.ReLU(inplace=True),
                nn.Linear(200, 10),
                nn.ReLU(inplace=True),
            )
    
        def forward(self, x):
            x = self.model(x)
    
            return x
    
    # GPU加速
    device = torch.device('cuda:0')
    net = MLP().to(device)
    # 优化方法SGD 待优化变量 [w1, b1, w2, b2, w3, b3]
    # optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)#自己定义结构实现
    optimizer = optim.SGD(net.parameters(), lr=learning_rate)# 使用Pytorch的API实现
    # loss_function 交叉熵
    criteon = nn.CrossEntropyLoss().to(device)
    
    for epoch in range(epochs):
    
        for batch_idx, (data, target) in enumerate(train_loader):
            # 重构为x*28*28的尺寸  28*28=784
            data = data.view(-1, 28*28)
            # GPU加速
            data, target = data.to(device), target.cuda()
            # 网络结构
            # logits = forward(data)#自己定义结构实现
            logits = net(data)# 使用Pytorch的API实现
            # 计算损失函数
            loss = criteon(logits, target)
            # 初始化梯度为0
            optimizer.zero_grad()
            # 计算反向传播梯度
            loss.backward()
            # print(w1.grad.norm(), w2.grad.norm())
            # 进行一次优化更新
            optimizer.step()
    
            if batch_idx % 100 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item()))
    
    
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data = data.view(-1, 28 * 28)
            data, target = data.to(device), target.cuda()
            # logits = forward(data)
            logits = net(data)
            test_loss += criteon(logits, target).item()
    
            pred = logits.data.max(1)[1]
            correct += pred.eq(target.data).sum()
    
        test_loss /= len(test_loader.dataset)
        print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
  • 相关阅读:
    UVa 439,Knight Moves
    UVa127,"Accordian" Patience
    UVa11882,Biggest Number
    UVa1599,Ideal Path
    我什么时候才能脱离题解....
    UVa208,Firetruck
    UVa1600,Patrol Robot
    UVa12325, Zombie's Treasure Chest
    随笔
    UVa11054
  • 原文地址:https://www.cnblogs.com/long5683/p/14706755.html
Copyright © 2020-2023  润新知