妙啊,是一个逼近(?)的做法
把两个值最为平面上的点坐标,然后答案也是一个点。
首先求出可能是答案的点xy分别是按照c和t排序做最小生成树的答案,然后考虑比这两个点的答案小的答案,一定在xy连线靠近原电一侧(不过这部分并不全都能更新答案),然后最小的一定是距离xy连线最远的,设为点z,也就是三角形xyz面积最大,然后用叉积列出面积公式吗,按这个做一次最小生成树求出z并更新答案,然后递归处理(x,z)(z,y),直到z不在靠近原点一侧
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=505;
int n,m,f[N];
pair<int,int>ans=make_pair(1e9,1e9);
struct qwe
{
int u,v,c,t,w;
}a[10005];
bool cmp(const qwe &a,const qwe &b)
{
return a.w<b.w;
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int zhao(int x)
{
return x==f[x]?x:f[x]=zhao(f[x]);
}
pair<int,int>mst()
{
sort(a+1,a+1+m,cmp);
for(int i=1;i<=n;i++)
f[i]=i;
pair<int,int>r=make_pair(0,0);
for(int i=1,con=0;i<=m&&con<n-1;i++)
{
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
{//cerr<<a[i].u<<" "<<a[i].v<<endl;
f[fu]=fv;
con++;
r.first+=a[i].c,r.second+=a[i].t;
}
}//cerr<<r.first<<" "<<r.second<<endl<<endl;
if(1ll*r.first*r.second<1ll*ans.first*ans.second||(1ll*r.first*r.second==1ll*ans.first*ans.second&&r<ans))
ans=r;
return r;
}
void wk(pair<int,int>x,pair<int,int>y)
{//cerr<<x.first<<" "<<x.second<<" "<<y.first<<" "<<y.second<<endl;
for(int i=1;i<=m;i++)
a[i].w=a[i].t*(y.first-x.first)-a[i].c*(y.second-x.second);
pair<int,int>z=mst();
if((y.first-x.first)*(z.second-x.second)-(y.second-x.second)*(z.first-x.first)>=0)
return;
wk(x,z);
wk(z,y);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
a[i].u=read()+1,a[i].v=read()+1,a[i].c=read(),a[i].t=read();
for(int i=1;i<=m;i++)
a[i].w=a[i].c;
pair<int,int>x=mst();
for(int i=1;i<=m;i++)
a[i].w=a[i].t;
pair<int,int>y=mst();
wk(x,y);
printf("%d %d
",ans.first,ans.second);
return 0;
}