• 04-树6. Huffman Codes--优先队列(堆)在哈夫曼树与哈夫曼编码上的应用


    题目来源:http://www.patest.cn/contests/mooc-ds/04-%E6%A0%916

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives an integer N (2 <= N <= 63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

    c[1] f[1] c[2] f[2] ... c[N] f[N]
    

    where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (<=1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

    c[i] code[i]
    

    where c[i] is the i-th character and code[i] is a string of '0's and '1's.

    Output Specification:

    For each test case, print in each line either “Yes” if the student’s submission is correct, or “No” if not.

    Sample Input:

    7
    A 1 B 1 C 1 D 3 E 3 F 6 G 6
    4
    A 00000
    B 00001
    C 0001
    D 001
    E 01
    F 10
    G 11
    A 01010
    B 01011
    C 0100
    D 011
    E 10
    F 11
    G 00
    A 000
    B 001
    C 010
    D 011
    E 100
    F 101
    G 110
    A 00000
    B 00001
    C 0001
    D 001
    E 00
    F 10
    G 11
    

    Sample Output:

    Yes
    Yes
    No
    No
    

    题目大意:通过给定的字符及其访问次数,判断给定的编码是否为哈夫曼编码
    判断条件:满足条件的编码形成的哈夫曼树可能不同,但其带权路径长度WPL一定相同且最小;且满足前缀码(前缀码是任何字符的编码都不是另一字符编码的前缀,前缀码可以避免二义性)
    解题思路
        1.根据输入的节点(字符)以及权重(访问次数),模拟建立哈夫曼树,并求出其WPL
            a.把权重建成一个最小堆(数组实现),然后每次弹出最小堆的最小元素即根节点
            b.构造一个新的节点:从堆中依次弹出两个最小的元素的和作为新节点的权重,再将新节点插入堆中
            c.WPL的值就是所有新节点的权重的和
        2.根据输入的编码计算WPL用来判断是否与哈夫曼树的WPL相同
            WPL等于每个字符编码访问次数与编码长度的乘积之和
        3.根据输入的编码判断是否为前缀码
            双重循环遍历,判断两个字符中某一个字符编码是否是另一个字符编码的前缀

    图解建立哈夫曼树的过程中最小堆与哈夫曼树的变化如下:

    代码如下:

    #include <cstdio>
    #include <cstdlib>
    #include <cctype>
    #include <cstring>
    
    #define N 64        //最大字符数
    #define M 200       //最大编码长度
    
    int HuffmanWPL(int heap[]);                             /*模拟建立哈夫曼树,返回WPL*/
    void PercolateDown(int heap[], int *Size, int parent);  /*从节点parent开始下滤*/
    void BuildMinHeap(int heap[], int *Size);               /*通过传入的完全二叉树(数组)建立最小堆*/
    int DeleteMin(int heap[], int *Size);                   /*删除堆中最小元素 */
    void Insert(int minHeap[], int * Size, int weight);     /*向最小堆中插入权重为weight的节点*/
    int CountWPL(int f[], char code[][M]);                  /*计算一种编码的WPL*/
    bool IsPrefixcode(char code[][M]);                      /*判断某种编码是否为前缀码*/
    bool IsPrefix(char *s1, char *s2);                      /*判断两个字符中某一个字符编码是否是另一个字符编码的前缀*/
    
    int n;      //全局变量,字符的个数
    
    int main()
    {
        char ch, code[N][M];
        int f[N];
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) {
            while(ch = getchar()) {
                if (isalpha(ch) || isdigit(ch) || ch == '_') {    //如果是字符
                    scanf("%d", &f[i]);         //输出对应的访问次数
                    break;
                }
            }
        }
        int minWPL = HuffmanWPL(f);             //通过模拟哈夫曼树得到最小WPL
    
        int stusNum;                            //学生个数(编码种类)
        scanf("%d", &stusNum);
        for (int i = 0; i < stusNum; i++) {
            for (int j = 1; j <= n; j++) {
                while(ch = getchar()) {
                    if (isalpha(ch) || isdigit(ch) || ch == '_') {    //若为字符
                        scanf("%s", code[j]);                         //输入对应字符的编码
                        break;
                    }
                }
            }
            int thisWPL = CountWPL(f, code);
            if (thisWPL == minWPL && IsPrefixcode(code))    //若WPL为最小且为前缀码
                printf("Yes
    ");
            else
                printf("No
    ");
        }
        return 0;
    }
    
    bool IsPrefixcode(char code[][M])
    {
        for (int i = 1; i <= n; i++)
            for (int j = i+1; j <= n; j++)
                if (IsPrefix(code[i], code[j]))
                    return false;
        return true;
    }
    
    bool IsPrefix(char *s1, char *s2)
    {
        while (s1 && s2 && *s1 == *s2) {  //从编码首位向后遍历,当遍历到末端或两者不相等时退出循环
            s1++;
            s2++;
        }
        if (*s1 == '' || *s2 == '')   //若遍历到某个字符编码的末端
            return true;                  //则该字符是另一字符的前缀
        else
            return false;
    }
    
    int CountWPL(int f[], char code[][M])
    {
        int WPL = 0;
        for (int i = 1; i <= n; i++)
            WPL += f[i] * strlen(code[i]);  //权重*编码长
        return WPL;
    }
    
    void PercolateDown(int heap[], int *Size, int parent)
    {
        int temp = heap[parent];
        int i, child;
    
        for (i = parent; i*2 <= (*Size); i = child){
            child = 2 * i;
            if (child != (*Size) && heap[child+1] < heap[child])    //找到值更小的儿子
                child++;
            if (temp > heap[child])     //如果值比下一层的大
                heap[i] = heap[child];  //下滤
            else
                break;
        }
        heap[i] = temp;
    }
    
    void BuildMinHeap(int heap[], int *Size)
    {
        for (int i = (*Size) / 2; i > 0; i--)   //从最后一个有儿子的节点开始
            PercolateDown(heap, Size, i);       //向前构造最小堆
    }
    
    int DeleteMin(int heap[], int *Size)
    {
        int minElem = heap[1];          //最小堆根节点为最小值
        heap[1] = heap[*Size];          //将最小堆最后一个节点放到根节点处
        (*Size)--;                      //节点数减一
        PercolateDown(heap, Size, 1);   //从根节点开始下滤
        return minElem;
    }
    
    void Insert(int heap[], int * Size, int weight)
    {
        int i;
        for (i = ++(*Size); i > 0 && heap[i/2] > weight; i /= 2)    //先将要插入的节点放最后
            heap[i] = heap[i/2];                                    //再上滤
        heap[i] = weight;
    }
    
    int HuffmanWPL(int heap[])
    {
        int minHeap[N];
        int Size = 1;
    
        for (int i = 1; i < n; i++)
            minHeap[Size++] = heap[i];  //将构造最小堆的数组初始化
        minHeap[Size] = heap[n];
        BuildMinHeap(minHeap, &Size);
    
        int WPL = 0;
        for (int i = 1; i < n; i++) {
            int leftWeight = DeleteMin(minHeap, &Size);
            int rightWeight = DeleteMin(minHeap, &Size);
            int rootWeight = leftWeight + rightWeight;
            WPL += rootWeight;
            Insert(minHeap, &Size, rootWeight);
        }
        return WPL;
    }
  • 相关阅读:
    [干货向]用Javascript获取页面元素的位置
    从 JavaScript 数组去重谈性能优化
    《悟透javascript》中的知识点
    深入理解javascript闭包
    深入理解Javascript之执行上下文(Execution Context)
    CSS Sprites的原理
    深入理解JavaScript定时机制
    防范sql注入式攻击的比较有见地的代码(PHP)
    PHP(authcode)加密解密
    预防数据库攻击
  • 原文地址:https://www.cnblogs.com/llhthinker/p/4773897.html
Copyright © 2020-2023  润新知